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Nonlinear parabolized stability equations are employed inthis work to investigate the nonlinear development of the G¨ortler insta-
bility up to the saturation stage. The perturbed boundary layer is highly inflectional both in the normalwise and spanwise directions
and receptive to the secondary instabilities. The Floquet theory is applied to solve the fundamental, subharmonic and detuned
secondary instabilities. With the Görtler-vortices-distorted base flow, two classes of secondary disturbances, i.e. odd modes and
even modes, are identified according to the eigenfunctions of the disturbances. These modes may result in different patterns in the
late stages of the transition process. Li and Malik [1] have shown the sinuous and varicose types of breakdown originating from the
odd and even modes. The current study focuses on the four mostamplified modes termed the even modes I & II and odd modes I
& II. Odd mode II was missing in the work of Li and Malik [1] probably due to their inviscid simplification. The detuned modes
are confirmed to be less amplified than the fundamental (for the odd mode I) and subharmonic modes (for even modes I & II and
the odd mode II).
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57: 555–561, doi: 10.1007/s11433-014-5396-2

1 Introduction

The boundary layer centrifugal instability excited by the sur-
face roughness or the free-stream turbulence [2] along a con-
cave wall is commonly known as the Görtler instability. As
a result of the sustained imbalance between the centrifu-
gal force and the normal pressure gradient, the streamwise
counter-rotating longitudinal vortices with a quasi-constant
spanwise wavelength are produced. The steady streamwise
vortices give rise to highly distorted profiles both in the nor-
mal and spanwise directions which are receptive to the high-
frequency secondary instabilities. Complete reviews on the
Görtler instabilities are given by Herbert [3], Hall [4], Flo-
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ryan [5] and Saric [6].
The Görtler vortices as such are not the indicators of the

transition-onset. The main reason for the breakdown is the
high frequency secondary instabilities of the vortices. Her-
bert’s [7] secondary instability theory (Floquet theory) well
explained the subharmonic type mode of the plane Poiseuille
flows. The application of the Floquet theory in the secondary
instabilities has been reviewed by Herbert [8] in detail.

As one of the most comprehensive experiments, Swearin-
gen and Blackwelder [9] studied the growth and breakdown
of the Görtler vortices using hot-wire rakes. In their experi-
ment, nothing was done to fix the spanwise wavelength, i.e.
naturally developed vortices were given birth and the vortices
triggered inviscid shear layer instabilities. Both the horseshoe
vortex structure and the sinuous oscillations were observed in
the late stage of the transition process.
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With the successful observation and measurement of the
experiment [9], several numerical studies have been carried
out aiming at the nonlinear development of the Görtler vor-
tices and their secondary instability. Lee and Liu [10] ob-
tained the mushrooms with a finite-difference method. The
streamwise velocity matches well the experiment [9] before
the secondary disturbances set in. The development of the
Görtler instability can be reasonably characterized withthe
marching method (e.g. the parabolized stability equations).
The application of the nonlinear parabolized stability equa-
tions (NPSE) in the simulation of the Görtler instability goes
back to Hall [11]. The inflectional profiles of the streamwise
velocity were demonstrated and as a result the Rayleigh-type
secondary instabilities were anticipated. Studies of the sec-
ondary instability were given in a following paper by Hall
and Horseman [12]. The odd and the even modes which cor-
respond to the experimental observations [9] were obtained.
NPSE, as applied to the streamwise vortices, belongs to an
ad hoc simplification as the streamwise wavenumberα ≡ 0.
Hence, the iteration on the wavenumber is not applied. The
NPSE has been successfully used in the spatial growth of dis-
turbances including the 2D TS modes, 3D oblique modes,
crossflow vortices and the Görtler instabilities. For a detailed
review of this method, the reader may refer to Herbert [13].

Li and Malik [1] investigated the secondary instability in-
cluding both the fundamental and the subharmonic types.
The influence of the wavelength on the odd (dominating at
small wavelengths and resulting in sinuous-type break down)
and the even (dominating at large wavelengths and result-
ing in varicose-type break down) modes are clarified. Sub-
harmonics of both the odd and even modes were observed
to have comparable growth rates to their fundamental coun-
terparts. Yu and Liu [14] verified the growth rate obtained
from the secondary instability with the global energy balance
method and showed that sinuous mode will dominate.

The effect of curvature variation has been considered by
Benmalek and Saric [15] using NPSE. A stabilization effect
was confirmed for the Görtler vortices which developed from
a concave surface into a flat or convex section. The secondary
instability was thus suppressed as the inflection profiles van-
ished. Also with the PSE approach, Cunff and Zebib [16]
studied the Görtler vortices in the wall jet flow and captured
the primary instability in the experiment. Liu et al. [17] stud-
ied the secondary instability of boundary layer distorted with
both Klebanoff streaks and the Tollmien-Schlichting waves.
The results of the Floquet analysis show that the interaction
of the steaks and the TS waves can result in different man-
ners depending on the wave number and the amplitude of the
streaks.

More recently, Wu et al. [18] formulated the initial-
boundary-value problem accounting for the receptivity and
the development of the induced disturbances. The asymptotic
analysis showed the distinct regimes where a fixed wave-
length disturbance would evolve. Schrader et al. [19] studied
the receptivity, instability and breakdown of the Görtlervor-

tices with spatial DNS (Direct Numerical Simulation). Xu
el al. studied the secondary instability of crossflow vortices
with both incompressible [20] and compressible [21] formu-
lations showing that wall suction can effectively suppress the
crossflow instability as well as its secondary instability.

However, most of the secondary instability studies fell into
the scope of the inviscid analysis with a resulting simplified
stability equation. The inviscid assumptions cannot give the
real physics of the disturbances in the high-shear region. The
present study is carried out under the experiment of Swearin-
gen and Blackwelder [9]. The viscous and compressible Flo-
quet system is established and the fundamental, subharmonic
and detuned secondary instabilities are studied. In sect. 2,
the formulation of the NPSE is given and the base flow is
obtained. Sect. 3 formulates the Floquet system and the re-
lated numerical method is introduced. The results of the fun-
damental mode are given in sect. 4. The influences of the
Floquet parameter, i.e. the detuned and subharmonic on the
secondary instabilities are clarified in sect. 5 followed bythe
concluding remarks in sect. 6.

2 NPSE and the saturated G̈ortler vortices

Following Chang and Malik [22], the disturbance equa-
tions for the density, velocities and temperature, i.e., ˜q =
(

ρ̃, ũ, ṽ, w̃, T̃
)

can be represented below in a compact form.

Γ
∂q̃
∂t
+ A
∂q̃
∂x
+ B
∂q̃
∂y
+ C
∂q̃
∂z
+ Dq̃

= Hxx
∂2q̃
∂x2
+ Hxy

∂2q̃
∂x∂y

+Hxz
∂2q̃
∂xz
+ Hyy

∂2q̃
∂y2
+ Hyz

∂2q̃
∂y∂z

+ Hzz
∂2q̃
∂z2
+ N. (1)

Matrices (5× 5)Γ, A, B, C, D, Hxx, Hyy, Hzz, Hxy, Hyz and
Hxz represent the coefficients that are functions of theRe,
Ma, Pr numbers, curvature and base flow quantities. These
matrices can be found in ref. [21]. ThePr number is as-
sumed to be 0.72 in the flow. Stokes’s hypothesis and the
Sutherland law are employed for the closure of the distur-
bance equations. The streamwise, normalwise and spanwise
coordinates are denoted withx, y andz respectively. In the
frame work of the NPSE, the disturbances and the nonlinear
terms are expressed by the truncated Fourier series, i,e.

q̃ (x, y, z, t)

=

M
∑

m=−M

N
∑

n=−N

ϕ̂mn (x, y) exp

(

i
∫

αmn (x) dx + inβz − imωt

)

,

(2)

N =
M
∑

m=−M

N
∑

n=−N

f̂mn exp(inβz − imωt). (3)

Hereα is the streamwise wavenumber which is identical
to zero. The spanwise wavenumber and the disturbance fre-
quency are denoted withβ andω respectively. It should be
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noted thatω = 0 corresponds to the steady vortices. By sub-
stituting the series (2) and (3) into the stability equation(1),
the shape functions of the Fourier mode (m, n) is thus gov-
erned by

Hx
∂ϕ̂mn

∂x
+ Hy

∂ϕ̂mn

∂y
+ Hϕ̂mn

= Hxx
∂2ϕ̂mn

∂x2
+ Hxy

∂2ϕ̂mn

∂x∂y
+ Hyy

∂2ϕ̂mn

∂y2

+ F̂mn exp

(

−i
∫

αmndx

)

, (4)

whereϕ̂ =
(

ρ̂, û, v̂, ŵ, T̂
)

and the matricesHx, Hy andH are
given by

Hx = A − 2iH xxαmn − inβH xz, (5a)

Hy = B − iH xyαmn − inβHyz, (5b)

H = D − imωΓ + inβC + β2n2Hzz + iαmn A

+

(

αmn
2 − i
∂αmn

∂x

)

Hxx + nβαmnHxz. (5c)

Notice thatα ≡ 0 and

∂

∂x
∼ O

(

1
Re

)

, Hxx ∼ Hxy ∼ Hyy ∼ O

(

1
Re

)

. (6)

The analysis of the order of magnitude (6) enables the parab-
olization of the governing equations of the shape function (4)
into PSE, i.e,

Hx
∂ϕ̂mn

∂x
+ Hy

∂ϕ̂mn

∂y
+ Hϕ̂mn = Hyy

∂2ϕ̂mn

∂y2
+ F̂mn. (7)

The Fourier modes (m, n) are calculated with the Dirich-
let boundary conditions. For the (0, 0) mode, we apply the
Neumann condition at the far field to the normal velocity to
assure mass conservation:

ûmn = v̂mn = ŵmn = T̂mn = 0, y = 0,

ûmn = v̂mn = ŵmn = T̂mn = 0, y→ ∞,

û00 =
∂v̂00

∂y
= ŵ00 = T̂00 = 0, y→ ∞.

(8)

The parabolized equations (7) now can be solved with a
marching procedure in thex direction. Following Schmid
and Henningson [23], to achieve the highest possible accu-
racy, we apply the mapping

y = a
1+ ȳ
b − ȳ

, a =
yiymax

ymax− 2yi
, b = 1+

2a
ymax
, ȳ ∈ [−1, 1] (9)

in the normal wise direction, which allows for a clustering of
one half of the grid points to the interval [0, yi] accompanied
by the fourth-order central difference scheme

∂ϕ̂ j

∂y
=
ϕ̂ j−2 − 8ϕ̂ j−1 + 8ϕ̂ j+1 − ϕ̂ j+2

12∆y
, (10a)

∂2ϕ̂ j

∂y2
=
−ϕ̂ j−2 + 16ϕ̂ j−1 − 30ϕ̂ j + 16ϕ̂ j+1 − ϕ̂ j+2

12(∆y)2
. (10b)

The marching is proceeded with an implicit Euler scheme
and the nonlinear terms are iterated until the residual is less
than the prescribed tolerance, e.g. 10−10. The base flow is
calculated until the saturation state of the Görtler vortices in
accordance with the experiment [9] is reached.

The cases shown below follow the NPSE calculations of
Li and Malik [1] where the parameters are taken from the ex-
periment of Swearingen and Blackwelder [9]. The freestream
velocity is 5 m/s and the radius of curvature of the concave
surface is 3.2 m. The marching procedure is applied within
0.1 m 6 x 6 1.4 m. The initial shape of the disturbances is
given by the normal mode analysis and the specified ampli-
tude isu = 0.0187U∞ on the basis of the experiment. In the
category of the incompressible flows, the energy of a partic-
ular Fourier component is defined as

E(0,n) =

∫ ∞

0
|û0n|

2 + |v̂0n|
2 + |ŵ0n|

2dy, n , 0, (11a)

E(0,0) =

∫ ∞

0
|û00|

2 + |ŵ00|
2dy. (11b)

The nonlinear development of the Görtler vortices demon-
strated by the disturbance energy is shown in Figure 1. The
spanwise wavelengthλ is 0.009, 0.018 and 0.036 m respec-
tively and the comparison with Li and Malik [1] is made for
the case of 0.009 m wavelength. The disturbance energy
matches Li and Malik well. A global watch of the nonlin-
ear development of the Görtler vortices is shown in Figure 2.
Ten slices of the streamwise velocity are given ranging from
x = 0.1 m to x = 1.2 m.

The steady streamwise Görtler vortices distorted the Bla-
sius boundary layer in the normalwise and spanwise direc-
tions and resulted in highly inflectional profiles. The gradi-
ents of the streamwise velocity are shown in Figures 3 and 4.
for the 18 mm case.

The flow field with the saturated Görtler vortices will be
used as the base flow of the subsequent secondary instabili-
ties.

3 Formulation of the Floquet system

In the methodology of the Floquet theory, the secondary dis-
turbances are expressed as

q̃s (x, y, z, t) = eγzeσt+iαs x
∞
∑

m=−∞

q̂m (y) eimβz, 0 6 γi 6
β

2
.

(12)
Hereγi = 0 gives the fundamental secondary instability while
γi = 0.5β results in the subharmonic modes. The remaining
choices ofγi produce the detuned modes. The parameterαs

is the streamwise wavenumber of the secondary disturbances.
The present study focuses on the temporal evolution of the
disturbances and thusαs is prescribed andσ is the eigenvalue
to determine. By ignoring the variation of the base flow in
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Figure 1 Disturbance energy of the nonlinear development of Görtler vor-
tices with Fourier mode (0, 0)− (0, 8). (a)λ = 9 mm. The circles denote the
results given by Li and Malik [1]; (b)λ = 18 mm; (c)λ = 36 mm.

the streamwise direction, equation (2) is thus simplified as

Q (y, z) = q̄0 (y) +
∞
∑

n=−∞

Q̄n (y) einβz. (13)

By substituting eqs. (12) and (13) into the N-S equations,
the curvature-related terms are neglected due to the inviscid
nature of the secondary instability. The eigenvalue problem
is finally formulated as

LΘ = σRΘ. (14)

The system is discretized for numerical solutions. The
Chebyshev collocation method (9) is also used here in the
normalwise direction withNy grid points. The Fourier collo-

(a)

(b)

(c)

Figure 2 The nonlinear development of Görtler vortices characterized by
the streamwise velocity, contour levels= 0.1−0.9. (a)λ = 9 mm; (b)λ = 18
mm; (c)λ = 36 mm.
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cation method in eq. (12) is used in the spanwise direction
with Nz points due to its periodicity. As a result,L andR are

sparse square matrix of size
(

Ny × Nz × 5
)2

. The generalized
eigenvalue problem is solved with the Arnoldi method.

Jie Ren
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4 Fundamental mode

The 18 mm-wavelength case is chosen for the analysis of
the secondary instability. From the analysis of Li and Malik
[1], it is shown that the growth rate of the secondary insta-
bility becomes larger as the Görtler vortices gather strength
towards their saturation states. Back to the base flow shown
in Figure 2, the saturation state is reached at aboutx = 100
cm. Here we give the results of three streamwise stations
x = 95, 100 and 105 cm in Figure 5. The most amplified
four modes are given. Through comparing the three sta-
tions, the growth rate of the most amplified mode within
its wavenumber scope remains nearly unchanged but a slight
drop atx = 105 cm. Thus it can be inferred that the growth
rate of the secondary disturbances drops in the over-saturated
Görtler vortices.

These modes are termed the even modes and odd modes
according to the symmetry or dissymmetry of the eigenfunc-
tions. For the 18 mm case, the most amplified mode is the
even mode I. The largest growth rate is brought about by the
corresponding wavenumber shown in Table 1. The most dan-
gerous wavenumber lies between 0.21 and 0.27 correspond-
ing to the wavelength of 1.27–1.64 cm except odd mode II.
This is the length scale of the boundary layer thickness.

A special feature is shown by odd mode II. The growth
rate of this mode exceeds the others in the large wavenumber
regime, i.e.αs > 0.38−0.39 and odd mode II reaches its max-
imum atαs = 0.47− 0.48. This wavenumber is nearly twice
the most amplified wavenumber of the other modes thus the
disturbances governed by odd mode II bear a smaller length
scale in the streamwise direction.

Here we show the eigenfunctions of the four modes in Fig-
ure 6. The streamwise velocity component|us| is plotted to-
gether with the corresponding base flow atx = 95 cm. Both
the disturbances and the base flows are normalized so that
they have the unity maximum value. The wavenumberαs is
specified as 0.225 (wavelengthλx = 1.53 cm), thus the modes
in descending order of the growth rate are even mode I, odd
mode I, even mode II and odd mode II.

A comparison can be made here with the inviscid calcu-
lation by Li and Malik (pp.87, Figure 5) [1]. The overall
shapes of the disturbances coincide with each other. A close
look at odd mode I and even mode II shows the suppression
of the disturbances near the wall. This distinction can be at-
tributed to the inviscid equations used by Li and Malik [1].
The diffusion caused by the viscosity is therefore eliminated.
In general, the secondary instability is inviscid in natureand
the ignored viscosity should not create an essential influence.

Finally we focus on odd mode II which was not reported
by Li and Malik (pp.85, Figure 3) [1]. The disturbances are
concentrated near the stem of the mushroom near the wall.
A global method which finds all the eigenvalues was used
by them, thus the missing part should be for the inviscid
analysis. The largest growth rate of this mode is yet less
than that of even mode I. Within the cases studied here, odd
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Figure 5 The growth rate of the secondary disturbances at (a)x = 95 cm;
(b) x = 100 cm and (c)x = 105 cm. The most amplified four modes are
shown.

Table 1 The wavenumber at which the four modes are most amplified

αs x = 95 cm x = 100 cm x = 105 cm

Even mode I 0.26 0.27 0.27

Even mode II 0.21 0.23 0.24

Odd mode I 0.21 0.23 0.24

Odd mode II 0.47 0.48 0.48
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mode II should not appear in the experiment.

5 Subharmonic and detuned modes

In this section, the influence of Floquet parameterγ is stud-
ied. Here we introduceε = γi/β and thus 0< ε < 0.5 and
ε = 0.5 give the detuned and subharmonic modes respec-
tively. The influence of the Floquet parameter on the growth
rate of the four modes is within 3.5% as shown in Figure 7.

The growth rates of the subharmonic modes are larger than
their fundamental counterparts except odd mode I. According
to the results of Li and Malik [1], even mode I is stronger for
the large wavelengths while odd mode I is stronger for the
small wavelengths. As a result, the even mode tends to ap-
pear as the subharmonic type while the odd mode tends to
appear as the fundamental.

The Floquet parameter does not alter the absolute value of
the disturbances but a phase change. The real parts of distur-
bancesu are shown in Figure 8 for the subharmonic modes
and Figure 9 for the detuned modes with a Floquet parameter
of γi = 0.25β.

The subharmonic modes show a phase reverse. Both the
subharmonic and detuned modes bear the spanwise wave-
length twice that of the base flow. The detuned modes are
rarely reported in the existing articles. In the current cases,
they have the growth rates lower than the fundamental or sub-
harmonic modes. Hence, no occurrence should be noticed in
the experiments.

6 Concluding remarks

Secondary instability analysis is carried out for the classic
experiment conducted by Swearingen and Blackwelder [9].
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tuned instability atx = 105 cm,αs = 0.3. (a) Even mode I; (b) odd mode I;
(c) even mode II; (d) odd mode II.

The NPSE is formulated and numerically solved for the base
flow. The saturated Görtler vortices considerably distortthe
Blasius boundary layer and are responsible for the secondary
instabilities.
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Floquet theory is applied in the formulation of the sec-
ondary instability. For the 18mm case of the base flow, fun-
damental modes are given for three streamwise stations near
the saturation point. The most amplified four modes observed
are even I, odd I, even II and odd II. The mode even I is the
most amplified mode and will result in the horseshoe type
breakdown. Odd mode II missing in Li and Malik’s work [1]
shows some unique features against the other three. The most
dangerous streamwise wavenumber for this mode is nearly
twice the others and it will dominate in a large wavenumber
regime.

Together with the fundamental modes, the subharmonic
and detuned counterparts also exist for each mode. The abso-
lute values of the eigenfunctions of the three types are exactly
identical but a phase change. The growth rate of the sub-
harmonic mode even exceeds that of the fundamental mode
except odd mode I. Therefore, it can be concluded that the
subharmonic mode is responsible for the transition process.
This is in correspondence with the observation of the experi-
ment where the mushrooms are attracted or move away with
each other.

Finally, it should be noted that the present study is limited
to the incompressible flows with elaborate experiment avail-
able. Exploration into the supersonic and hypersonic flows,
either experimentally or numerically, is still far from require-
ment.

The authors thank Dr. XU GuoLiang and Dr. LIU JianXin for valuable com-

ments and suggestions. The work was supported by the National Natural

Science Foundation of China (Grant Nos. 10932005 and 11202115).

1 Li F, Malik M R. Fundamental and subharmonic secondary instabilities
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