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Nonlinear parabolized stability equations are employethigwork to investigate the nonlinear development of tlwetl@f insta-
bility up to the saturation stage. The perturbed boundargrles highly inflectional both in the normalwise and spamndgections
and receptive to the secondary instabilities. The Floguebry is applied to solve the fundamental, subharmonic atdned
secondary instabilities. With the Gortler-vorticestdited base flow, two classes of secondary disturbancespde modes and
even modes, are identified according to the eigenfunctibtiseadisturbances. These modes may resultfiedint patterns in the
late stages of the transition process. Li and Malik [1] hdwes the sinuous and varicose types of breakdown origigdtom the

odd and even modes. The current study focuses on the fouramgsified modes termed the even modes | & Il and odd modes |
& 1. Odd mode Il was missing in the work of Li and Malik [1] prably due to their inviscid simplification. The detuned modes
are confirmed to be less amplified than the fundamental (foottd mode 1) and subharmonic modes (for even modes | & Il and
the odd mode II).
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1 Introduction ryan [5] and Saric [6].
The Gortler vortices as such are not the indicators of the

) ) B ) transition-onset. The main reason for the breakdown is the
The boundary layer centrifugal instability excited by the-s 5y frequency secondary instabilities of the vortices.r-He

face roughness or the free-stream turbulence_[Z] an_nga COMart's [7] secondary instability theory (Floquet theoryliv
cave wall is commonly known as the Gortler instability. AS oy h|ained the subharmonic type mode of the plane Poiseuille
a result of the sustained imbalance between the centrifugq s The application of the Floquet theory in the secondary
gal force and the normal pressure gradient, the streamwisg,q;apilities has been reviewed by Herbert [8] in detail.
counter-rotating longitudinal vortices with a quasi-ciams As one of the most comprehensive experiments, Swearin-
spanwise wavelength are produced. The steady streamwis en and Blackwelder [9] studied the growth and b;eakdown

vortices give rse to h|gh!y dlstor_ted profiles bc_)th n therJnQ of the Gortler vortices using hot-wire rakes. In their estpe
mal and spanwise directions which are receptive to the high-

f darv instabilit c let . th ment, nothing was done to fix the spanwise wavelength, i.e.
re"quen_cy seconaary instabiities. Lomplete reviews @n naturally developed vortices were given birth and the gesi
Gortler instabilities are given by Herbert [3], Hall [4]|d-

triggered inviscid shear layer instabilities. Both thedeshoe
*Corresponding author (email: fs-dem@tsinghua.edu.cn) vortex structure and the sinuous oscillations were obskrve
+Contributed by FU Song (Associate Editor-in-Chief) the late stage of the transition process.
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With the successful observation and measurement of théices with spatial DNS (Direct Numerical Simulation). Xu
experiment [9], several numerical studies have been chrrieel al. studied the secondary instability of crossflow vasic
out aiming at the nonlinear development of the Gortler vor-with both incompressible [20] and compressible [21] formu-
tices and their secondary instability. Lee and Liu [10] ob- lations showing that wall suction caffectively suppress the
tained the mushrooms with a finitefidirence method. The crossflow instability as well as its secondary instability.
streamwise velocity matches well the experiment [9] before However, most of the secondary instability studies fethint
the secondary disturbances set in. The development of ththe scope of the inviscid analysis with a resulting simpdifie
Gortler instability can be reasonably characterized wlign  stability equation. The inviscid assumptions cannot giee t
marching method (e.g. the parabolized stability equajions real physics of the disturbances in the high-shear regibe. T
The application of the nonlinear parabolized stability @qu present study is carried out under the experiment of Swearin
tions (NPSE) in the simulation of the Gortler instabilitgeas  gen and Blackwelder [9]. The viscous and compressible Flo-
back to Hall [11]. The inflectional profiles of the streamwise quet system is established and the fundamental, subhazmoni
velocity were demonstrated and as a result the Rayleigh-typand detuned secondary instabilities are studied. In sect. 2
secondary instabilities were anticipated. Studies of e s the formulation of the NPSE is given and the base flow is
ondary instability were given in a following paper by Hall obtained. Sect. 3 formulates the Floquet system and the re-
and Horseman [12]. The odd and the even modes which corlated numerical method is introduced. The results of the fun
respond to the experimental observations [9] were obtaineddamental mode are given in sect. 4. The influences of the
NPSE, as applied to the streamwise vortices, belongs to akloquet parameter, i.e. the detuned and subharmonic on the
ad hoc simplification as the streamwise wavenumber 0. secondary instabilities are clarified in sect. 5 followed!oy
Hence, the iteration on the wavenumber is not applied. Theconcluding remarks in sect. 6.

NPSE has been successfully used in the spatial growth of dis-

turbances including the 2D TS modes, 3D obliqgue modes? NPSE and the saturated @rtler vortices
crossflow vortices and the Gortler instabilities. For sailet

review of this method, the reader may refer to Herbert [13]. Following Chang and Malik [22], the disturbance equa-

Li and Malik [1] investigated the secondary instability in- tions for the density, velocities and temperature, ie.= "
cluding both the fundamental and the subharmonic types(?: & % W. T) can be represented below in a compact form.

The influence of the wavelength on the odd (dominating at a4 a4 Ba_q . Caq

small wavelengths and resulting in sinuous-type break down FE + Aa_x + 3 5 + D§

and the even (dominating at large wavelengths and result- o y o

ing in varicose-type break down) modes are clarified. Sub- — Hxx@ n nyﬂ

harmonics of both the odd and even modes were observed ox? oxoy

to have comparable growth rates to their fundamental coun- 0°q 0%4 0%4 4%q

terparts. Yu and Liu [14] verified the growth rate obtained + sza_xz + HWa_yz * Hﬂﬁaz * Huﬁ N (@)

from the secondary instability with the global energy bakan
method and showed that sinuous mode will dominate.

The dfect of curvature variation has been considered by
Benmalek and Saric [15] using NPSE. A stabilizatidfeet
was confirmed for the Gortler vortices which developed from
a concave surface into a flat or convex section. The seconda
instability was thus suppressed as the inflection profiles va
ished. Also with the PSE approach, Guiand Zebib [16]
studied the Gortler vortices in the wall jet flow and capture
the primary instability in the experiment. Liu et al. [17lidt
ied the secondary instability of boundary layer distorteithw
both Kleband streaks and the Tollmien-Schlichting waves. §(x,y, z t)

The results of the Floquet analysis show that the interactio M N

of the steaks and the TS waves can result ffiedént man- = Z Z @ (X, Y) exp(i fa/mn () dx + inBz — imwt |,
ners depending on the wave number and the amplitude ofthe ~ m=—mn="N

streaks. 2)

More recently, Wu et al. [18] formulated the initial- M N
boundary-value problem accounting for the receptivity and N = Z Z frn exp(inBz — imwt). )
the development of the induced disturbances. The asyroptoti m=-M n=-N
analysis showed the distinct regimes where a fixed wave- Herea is the streamwise wavenumber which is identical
length disturbance would evolve. Schrader et al. [19] &idi to zero. The spanwise wavenumber and the disturbance fre-
the receptivity, instability and breakdown of the Gorter- quency are denoted wiih andw respectively. It should be

Matrices (5x 5) I', A, B, C, D, Hyx, Hyy, Hz, Hyy, Hy; and

H,; represent the cdicients that are functions of thie,

Ma, Pr numbers, curvature and base flow quantities. These
matrices can be found in ref. [21]. TH& number is as-
rsumed to be 0.72 in the flow. Stokes’s hypothesis and the
dutherland law are employed for the closure of the distur-
bance equations. The streamwise, normalwise and spanwise
coordinates are denoted wii) y andz respectively. In the
frame work of the NPSE, the disturbances and the nonlinear
terms are expressed by the truncated Fourier series, i,e.
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noted thatw = O corresponds to the steady vortices. By sub-  8°¢;  —¢j2 + 165j-1 — 305 + 16¢;.1 — §js2

stituting the seri_es (2) and (3) inFo the stabili.ty equaiibp a2 12(Ay)? (100)
the shape functions of the Fourier mods ) is thus gov- The marching is proceeded with an implicit Euler scheme
erned by and the nonlinear terms are iterated until the residualsis le
O AP ) than the prescribed tolerance, e.g.”#0 The base flow is
Hx ox T Hya—y +Hom calculated until the saturation state of the Gortler weiin
. oo oo accordance with the experiment [9] is reached.

The cases shown below follow the NPSE calculations of
Li and Malik [1] where the parameters are taken from the ex-
+Fm exp(—i famndx), (4) periment of Swearingen and Blackwelder [9]. The freestream

velocity is 5 nis and the radius of curvature of the concave

. surface is 2 m. The marching procedure is applied within

whereg = (5,0,9,W, T) and the matricesi,, Hy andH are 91 m < x < 1.4 m. The initial shape of the disturbances is

given by . _ given by the normal mode analysis and the specified ampli-
Hx = A - 2iHxam — inBH q, (58)  tude isu = 0.0187U,, on the basis of the experiment. In the
Hy = B — iHyyam — inBHyy, (5b) category of the incompressible flows, the energy of a partic-

ular Fourier component is defined as

H = D—imwl +in8C + 2n’Hy + iam A o R R
Eon = f Oonl® + Wonl® + WWondy, n#0,  (Lla)
0

El0o) = f 1800l + Wooldly. (11b)
0

ox ) Hxx + NBamH xz. (5¢)

+ (a,m
Notice thate = 0 and The nonlinear development of the Gortler vortices demon-
o 1 1 strated by the disturbance energy is shown in Figure 1. The
ax "~ O(ﬁe)’ Hix ~ Hyy ~ Hyy ~ O(ﬁe)' (6)  spanwise wavelength is 0.009, 0.018 and 0.036 m respec-
tively and the comparison with Li and Malik [1] is made for
The analysis of the order of magnitude (6) enables the paratthe case of 0.009 m wavelength. The disturbance energy
olization of the governing equations of the shape funct#®n ( matches Li and Malik well. A global watch of the nonlin-
into PSE, i.e, ear development of the Gortler vortices is shown in Figure 2
2n Ten slices of the streamwise velocity are given ranging from
“ 0“Pm = — —
Hx——" + Hy +H@m = Hy——=" + Fm. 7 x=01mtox=12m. _ _ _
ox ay ay The steady streamwise Gortler vortices distorted the Bla-
The Fourier modesn, n) are calculated with the Dirich- sius boundary layer in the normalwise and spanwise direc-

let boundary conditions. For the,@® mode, we apply the tions and resulted ir_1 highly i_nflectional prc_;file_s. The gradi
Neumann condition at the far field to the normal velocity to €NtS Of the streamwise velocity are shown in Figures 3 and 4.

9m 9om

assure mass conservation: for the 18 mm case. ) _ _
R The flow field with the saturated Gortler vortices will be
U =V = Wem = T =0, y=0, used as the base flow of the subsequent secondary instabili-
O = Vm =Wm =Tm =0, y— oo, (8) ties.
N Voo . - .
Uoo = 5~ = Woo = Too = 0. y = co. 3 Formulation of the Floquet system

The parabolized equations (7) now can be solved with an the methodology of the Floquet theory, the secondary dis-
marching procedure in the direction. Following Schmid turbances are expressed as
and Henningson [23], to achieve the highest possible accu-

racy, we apply the mapping Ge(x Y, 2.t) = @Zertioe Z () €™ 0 <y < /g
V2 A m=—oco
ymartY qo W 4, 2B o) (9) (12)
b-y Ymax — 2 Ymax Herey; = 0 gives the fundamental secondary instability while

vi = 0.58 results in the subharmonic modes. The remaining
choices ofy; produce the detuned modes. The parameter
is the streamwise wavenumber of the secondary disturbances
The present study focuses on the temporal evolution of the
a_@,— B Qj-2 — 8pj-1 + 8Pjs1 — Djs2 (10a) disturbances and thusg is prescribed and is the eigenvalue

’ to determine. By ignoring the variation of the base flow in

in the normal wise direction, which allows for a clusterirfg o
one half of the grid points to the interval,[{j] accompanied
by the fourth-order central flerence scheme

oy 12Ay
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Figure 2 The nonlinear development of Gortler vortices charazgetiby
the streamwise velocity, contour level9.1-0.9. (a)2 = 9 mm; (b)A = 18
mm; (c)A = 36 mm.
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Figure 1 Disturbance energy of the nonlinear development of Giovtbe-

tices with Fourier mode (@) — (0, 8). (a)4 = 9 mm. The circles denote the S o 0.4
results given by Li and Malik [1]; (b} = 18 mm; (c)A = 36 mm. Qe .

i irecti i i implifi Level Uz any -
the streamwise direction, equation (2) is thus simplified as ovel - U2 & @% 0.7

QW2 =G+ ). Qu(y)e™ (13) 2

N=—o00

y (cm)

By substituting eqgs. (12) and (13) into the N-S equations, 0
the curvature-related terms are neglected due to the idvisc 12
nature of the secondary instability. The eigenvalue proble Figure 4 The spanwise gradient of the streamwise veloéy, 1 = 18
is finally formulated as mm.
= . 14 . . . . . . .
L6 = 0RO (14) cation method in eq. (12) is used in the spanwise direction
The system is discretized for numerical solutions. TheWith Nz points due to its periodicity. As a resuff,andR are
Chebyshev collocation method (9) is also used here in thesparse square matrix of siéhly X Nz X 5) . The generalized
normalwise direction withN, grid points. The Fourier collo-  eigenvalue problem is solved with the Arnoldi method.
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4 Fundamental mode 0025

0.020 | @
The 18 mm-wavelength case is chosen for the analysis of F
the secondary instability. From the analysis of Li and Malik 0015 F
[1], it is shown that the growth rate of the secondary insta- 0010
bility becomes larger as the Gortler vortices gather gfiten = :
towards their saturation states. Back to the base flow shown g 0005
in Figure 2, the saturation state is reached at akout100 0.000
cm. Here we give the results of three streamwise stations -0.005 g
x = 95,100 and 105 cm in Figure 5. The most amplified E Even mode |
four modes are given. Through comparing the three sta- —0.010 | DT penmade !
tions, the growth rate of the most amplified mode within 0,015 v CTITTOWTORN
its wavenumber scope remains nearly unchanged but a slight 0 01 02 03 04 05 06 07 08

drop atx = 105 cm. Thus it can be inferred that the growth
rate of the secondary disturbances drops in the over-satura

0.025

Gortler vortices. g )

These modes are termed the even modes and odd modes 0.020
according to the symmetry or dissymmetry of the eigenfunc- 0.015 F
tions. For the 18 mm case, the most amplified mode is the g
even mode I. The largest growth rate is brought about by the 5 001or
corresponding wavenumber shown in Table 1. The most dan- 8 0.005}
gerous wavenumber lies between 0.21 and 0.27 correspond- 0.000 E
ing to the wavelength of 1.27-1.64 cm except odd mode IlI. U
This is the length scale of the boundary layer thickness. -0.005 |

A special feature is shown by odd mode II. The growth P o e
rate of this mode exceeds the others in the large wavenumber g T Cmese
regime, i.es > 0.38-0.39 and odd mode Il reaches its max- 0018 s
imum atas = 0.47 — 0.48. This wavenumber is nearly twice a
the most amplified wavenumber of the other modes thus the
disturbances governed by odd mode Il bear a smaller length 0.025

scale in the streamwise direction.

Here we show the eigenfunctions of the four modes in Fig-
ure 6. The streamwise velocity compon@nt is plotted to- 0.015 |
gether with the corresponding base flonkat 95 cm. Both g

0.020

the disturbances and the base flows are normalized so that s 0.010 T
they have the unity maximum value. The wavenumbeis 8 0.005 .

specified as 0.225 (wavelength = 1.53 cm), thus the modes 0.000 F

in descending order of the growth rate are even mode I, odd

mode I, even mode Il and odd mode II. ~0.005

A comparison can be made here with the inviscid calcu- 0010F 0 e Even mode I
lation by Li and Malik (pp.87, Figure 5) [1]. The overall ~. Ot mode
shapes of the disturbances coincide with each other. A close _0'0150‘ | ‘6_'1‘ | ‘6.'2“ 03 04 05 06 ‘o'.7H 0.8
look at odd mode | and even mode Il shows the suppression @
of the disturbances near the wall. This distinction can be atrigure 5 The growth rate of the secondary disturbances ak )95 cm;
tributed to the inviscid equations used by Li and Malik [1]. (b) x = 100 cm and (cx = 105 cm. The most amplified four modes are
The difusion caused by the viscosity is therefore eliminated.shown.
In general, the secondary instability is inviscid in natanel
the ignored viscosity should not create an essential infleien

FinaIIy we focus on odd mode 1l which was not reported Table 1 The wavenumber at which the four modes are most amplified

T = Odd mode Il
[ AT W |

by Li and Malik (pp.85, Figure 3) [1]. The disturbances are as x=95cm x =100 cm x =105 cm
concentrated near the stem of the mushroom near the wall.  Eyen mode | 0.26 0.27 0.27
A global method which finds all the eigenvalues was used . mode 021 0.23 0.24
by them, thus the missing part should .be for th_e inviscid odd mode | 021 023 0.24
analysis. The largest growth rate of this mode is yet less

Odd mode I 0.47 0.48 0.48

than that of even mode |. Within the cases studied here, odd
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Figure 7 Influence of the Floguet parameter on the variation of groaté

of the four modes.
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Figure 6 Contours of the secondary disturbance@bsolute value, solid 20
lines) with the base flow (dashed lines). Nine levels areifipddrom 0.1 to @ 5\4 040.
0.9. (a) Even mode I; (b) odd mode I; (c) even mode II; (d) oddien. 15 =870 B4
£
S 1.0

mode Il should not appear in the experiment.

5 Subharmonic and detuned modes

In this section, the influence of Floquet parametés stud- <10
ied. Here we introduce = vy;/8 and thus O< ¢ < 0.5 and

= 0.5 give the detuned and subharmonic modes respec-
tively. The influence of the Floquet parameter on the growth 0 06 12 1( 8 24 30 360 06 12 (L'ﬁq) 24 30 36
rate of the four modes is within 3.5% as shown in Figure 7. Figure 8 Contours of the secondary disturbancegeal part) for the sub-

The growth rates of the subharmonic modes are larger thaRarmonic instability ak = 105 cm,as = 0.3. (a) Even mode I; (b) odd mode
their fundamental counterparts except odd mode I. Accgrdin I; (c) even mode II; (d) odd mode 1.
to the results of Li and Malik [1], even mode | is stronger for
the large wavelengths while odd mode 1 is stronger for the
small wavelengths. As a result, the even mode tends to ap- 2.0
pear as the subharmonic type while the odd mode tends to 15
appear as the fundamental.

The Floquet parameter does not alter the absolute value oKO 5
the disturbances but a phase change. The real parts of-distur
bancesu are shown in Figure 8 for the subharmonic modes
and Figure 9 for the detuned modes with a Floquet parameter
of yi = 0.253.

The subharmonic modes show a phase reverse. Both thE1'0
subharmonic and detuned modes bear the spanwise wave-0-5
length twice that of the base flow. The detuned modes are o — : —

. .. . o 06 12 18 24 30 360 06 12 18 24 3.0 36
rarely reported in the existing articles. In the currentesas z (cm) z (cm)
they have the growth rates lower than the fundamental or subrigure 9 Contours of the secondary disturbancegeal part) for the de-
harmonic modes. Hence, no occurrence should be noticed ituned instability ak = 105 cm,as = 0.3. (a) Even mode I; (b) odd mode I;
the experiments. (c) even mode I; (d) odd mode II.

OQQD

6 Concluding remarks The NPSE is formulated and numerically solved for the base

flow. The saturated Gortler vortices considerably distioet
Secondary instability analysis is carried out for the dtass Blasius boundary layer and are responsible for the secgndar
experiment conducted by Swearingen and Blackwelder [9].instabilities.
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Floguet theory is applied in the formulation of the sec-
ondary instability. For the 18mm case of the base flow, fun- 6
damental modes are given for three streamwise stations near7
the saturation point. The most amplified four modes observed
are even |, odd I, even Il and odd Il. The mode even | is the 8
most amplified mode and will result in the horseshoe type
breakdown. Odd mode Il missing in Liand Malik's work [1] 9
shows some unique features against the other three. The most
dangerous streamwise wavenumber for this mode is nearly
twice the others and it will dominate in a large wavenumber 10
regime.

Together with the fundamental modes, the subharmonic
and detuned counterparts also exist for each mode. The abso-
lute values of the eigenfunctions of the three types arethxac
identical but a phase change. The growth rate of the sub-
harmonic mode even exceeds that of the fundamental mode
except odd mode |. Therefore, it can be concluded that the, ,
subharmonic mode is responsible for the transition process
This is in correspondence with the observation of the experi ;4
ment where the mushrooms are attracted or move away with
each other.

Finally, it should be noted that the present study is limited 15
to the incompressible flows with elaborate experiment avail
able. Exploration into the supersonic and hypersonic flows, 16
either experimentally or numerically, is still far from n&ice-

ment. 17
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