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Abstract. The new mode of instability found by Tunney et al. [24] is studied with
viscous stability theory in this article. When the high-speed boundary layer is subject
to certain values of favorable pressure gradient and wall heating, a new mode becomes
unstable due to the appearance of the streamwise velocity overshoot (U(y)>U∞) in
the base flow. The present study shows that under practical Reynolds numbers, the
new mode can hardly co-exist with the conventional first mode and Mack’s second
mode. Due to the requirement for additional wall heating, the new mode may only
lead to laminar-turbulent transition under experimental (artificial) conditions.
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1 Introduction

The mechanism of high-speed laminar-turbulent flow transition is far from fully under-
stood [16]. One important reason is the multitudinous routes of the transition process that
is in turn influenced by various environmental conditions. Among them, modal stabil-
ity is generally considered the fundamental mechanism and relatively well-studied. The
representative examples are Tollmien-Schlichting waves in (quasi-) parallel flows [26],
Mack’s second modes in hypersonic flows [2], cross-flow modes in three-dimensional
boundary layers [13] and Görtler modes over concave surfaces (when Reynolds num-
ber is large) [8]. Under certain conditions (particularly with low external turbulence and
smooth geometry), perturbations (generated through receptivity mechanism) get ampli-
fied with modal instabilities causing the flow close to transition when their amplitude
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becomes large. However, even after amounts of studies, the knowledge on this funda-
mental modal stability is still insufficient.

Compared with zero pressure gradient, favorable pressure gradient (hereafter re-
ferred to as FPG) significantly stabilizes the boundary layer in both incompressible and
compressible flows (the first mode as well as Mack’s second mode). This is supported
by a number of studies, e.g., with direct numerical simulation [5, 10, 18], linear stability
theory [4,6,7] and very recent experiments [23,25]. Hence, in the review by Reed et al. [9],
the instability of boundary layer with FPG is described as ”very weak, if it exists at all”.
In fact, with FPG, the profile of the base flow U(y) becomes fuller and the thickness of
the boundary layer is decreased, which is mainly responsible for the stabilization of the
boundary layer.

On the other hand, wall-heating/cooling is one of the common passive flow control
methods used on various occasions. Its influence on boundary layer stability has been
well documented (see reviews in [3, 9]). In contrast to the adiabatic condition, wall heat-
ing can destabilize the first mode while stabilizing Mack’s second mode. Wall cooling,
instead, has opposite effects. One shall distinguish between wall-heating and localized
wall-heating. The latter gives rise to wall temperature jump effect and can destabilize
Mack’s second mode (see recent analysis in [22]).

When the flow is subject to the dual effects of FPG and wall-heating, a new mode
comes to light. A first analytical study was performed by Tunney et al. [24] under the
inviscid assumption. The direct cause of the instability is the appearance of streamwise
velocity overshoot (U(y)> U∞ near the upper edge of the boundary layer). Discussion
on the overshoot can be found in Tunney et al. [24] and the references therein. Under
inviscid assumption, the new mode was shown to have comparable growth rate as the
conventional first mode and Mack’s higher mode. However, the possible importance
of the new mode is not evaluated. In this paper, we report a viscous stability analysis
(with spatial mode) on this new mode which is more relevant for developing boundary
layers. The impact and limitations of the new mode will be discussed. In Section 2 the
methodology and the base flow are introduced. Modal stability is discussed in Section 3
and the paper is concluded in Section 4.

2 Methodology and base flow

The stability equations are derived from the Navier-Stokes equations provided the base
flow is obtained in advance. A frequently-adopted form is written as

Γ
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Here q̃=(ρ̃,ũ,ṽ,w̃,T̃)T is the perturbation vector of flow density, velocity and temperature.
The 5×5 matrices Γ, A, B,··· , are functions of the base flow and dimensionless parameters
Re, Ma, Pr. Detailed expressions for these matrices can be found in the authors’ previous
articles [19,20]. The physical quantities are nondimensionalized with their corresponding
free-stream values except pressure p∗ by ρ∗∞U∗2∞ . Asterisk denotes dimensional quantities.
The orthogonal coordinates x∗, y∗, z∗ describing the distance in streamwise, normalwise
and spanwise directions are normalised with the local boundary layer thickness length
scale δ∗=

√
ν∗∞x∗/U∗∞. As a result, the dimensionless parameters Re, Ma, Pr are

Re=
ρ∗∞U∗∞δ∗

µ∗∞
, Ma=

U∗∞√
γR∗airT∗∞

, Pr=
µ∗∞C∗p

κ∗∞
. (2.2)

One is able to identify, Re is a measure of streamwise coordinate when the freestream
parameters are fixed. On the other hand, when Re→∞, the equations reduce to inviscid
O-S and Squire equations in compressible form. In the framework of modal stability,
Eq. (2.1) is solved as an eigenvalue problem through

q̃(x,y,z,t)= q̂(y)exp(iαx+iβz−iωt)+c.c. (2.3)

We focus on the spatial problem which is more relevant to practical boundary layer flows.
Therefore, α is the eigenvalue to be numerically solved. In the above formulation, we
have assumed the fluid to be calorically-perfect-gas and Pr is constant. Therefore,

p∗=ρ∗R∗airT∗, γ=1.4, C∗p =const, R∗air =const, Pr=0.72=const. (2.4)

The first coefficient of viscosity µ is given by Sutherland’s law and the second coeffi-
cient follows Stokes’s hypothesis, i.e., λ=−2/3µ. The code is carefully validated with
published results [19, 21], one example is also provided in Fig. 4(a).

The self-similar solution of the boundary layer equations offers a concise thus nor-
malized base flow. For a better understanding of the new mode and generation of the
full stability diagram, it is employed in this study. Introducing the Mangler-Levy-Lees
transformation (see detailed introduction in [1, 11, 26])

dξ=ρeµeuedx

dη=
ρue√

2ξ
dy

, (2.5)

into the boundary layer equations, yields the transformed equations:

(c f ′′)′+ f f ′′+βp(1+k)(g− f ′2)=0
(a1g′+a2 f ′ f ′′)′+ f g′=0

}
, (2.6)

where the prime denotes the derivative with respect to η. The coefficients are defined as
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The physical quantities are recovered through

u∗

u∗∞
= f ′,

H∗

H∗∞
= g,

T∗

T∗∞
=(1+k)g−k f ′2. (2.8)

Here H denotes the total enthalpy. It should be noted that the temperature-based energy
equation is also frequently used. With the same transformation (2.5), the temperature-
based energy equation becomes

1
Pr

(cθ′)′+ f θ′+(γ−1)Ma2c f ′′2=0, (2.9)

where
T∗

T∗∞
= θ. (2.10)

(2.6) or (2.9) can be solved with standard boundary value problem (BVP) solvers. The
boundary conditions (isothermal) are

f (0)= f ′(0)=0, g(0)=Hw, f ′(∞)= g(∞)=1, (2.11)

and

f (0)= f ′(0)=0, θ(0)=Tw, f ′(∞)= θ(∞)=1. (2.12)

When g′(0)=0 or θ′(0)=0 is applied instead of the Dirichlet condition, the flow is adia-
batic.

Fig. 1 shows the profiles of streamwise velocity and temperature. As can be observed,
perfect matches with [24] (with Chapman’s law) and temperature based energy equation
(see also [14] with Sutherland’s law) have been achieved. Along with the increase of
the pressure gradient βp, the laminar boundary layer profile U(y) is essentially modi-
fied. The boundary layer thickness decreases. An inflection point appears along with the
presence of the streamwise velocity overshoot (larger than the free-stream value). And
two generalized inflection points are found due to the appearance of velocity overshoot
(see Fig. 2 in Tunney et al. [24]).

3 Stability analysis

Three groups of cases have been studied to reveal the stability diagram of the new mode
and its relationship to conventional first and Mack’s second mode. See Table 1 for the
prescribed parameters. Case 1 serves as a basic case to recover the typical zero-pressure
gradient boundary layer with adiabatic boundary condition. Wall heating is included in
Case 2 and the dual effects of wall heating and FPG are considered in Case 3. A broad
range of parameters is specified to show all the possible modal instabilities thus allowing
a complete stability diagram.
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Figure 1: Profiles of (a) the streamwise velocity U and (b) temperature T as functions of the similarity variable
η. The Falkner-Skan pressure gradient parameter βp =0, 0.1, 0.3, 0.5 and 0.7 respectively. Ma=6, Hw =1.5
and Pr=0.72.

Fig. 2(a) shows the stability diagram of zero-pressure gradient boundary layer subject
to adiabatic boundary conditions (Case 1). The unstable block (in the Re−β−ω space)
of the first and second modes are enclosed by the corresponding enveloping surfaces.
Apparently, both modes become unstable starting from certain Re numbers. These num-
bers, termed critical Reynolds numbers, indicate that the perturbations gain exponential
eigen-growth downstream of the leading edge. As can be seen from Fig. 2(a), the unsta-
ble regions of the two modes do not intersect with each other at Ma= 4.5. The angular
frequency of the second mode is above the first mode, therefore possessing a higher fre-
quency.

Several surface cuts are shown with β=0, 0.04, 0.08, 0.12, 0.16 and 0.20 respectively.
These iso-surfaces show contours of the eigenvalue αi (−αi is the local growth rate). One
is able to see that the second mode have an obviously larger growth rate and it reaches
maximum growth rate at β = 0. When β is increased, both the maximum growth rate
and the unstable area get reduced. In fact, it is generally accepted that the 2-D perturba-
tion (β= 0) is the most dangerous for the second mode. On the other hand, the optimal
spanwise wavenumber for the first mode is not zero.

When wall-heating is imposed, as shown in Fig. 2(b), Mack’s second mode is signifi-
cantly stabilized. Both the maximum growth rate and the unstable area become reduced.
On the other hand, the first mode is enhanced. The maximum growth rate is not much

Table 1: Parameters of the three cases studied. Mach number Ma=4.5, Stagnation temperature T∗0 =329K,
Spanwise wavenumber 0≤β≤1, angular frequency 0≤ω≤1.2 and Reynolds number 100≤Re≤2000.

Case Wall (total) enthalpy Wall temperature Pressure gradient
1 H′w =0 (Hw =0.88) Tw =4.44 βp =0
2 Hw =1.5 Tw =7.58 βp =0
3 Hw =1.5 Tw =7.58 βp =0.4
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Figure 2: Stability diagram of the boundary layer for Case 1 (a); Case 2 (b); Case 3 (c); Case 2 & 3 (d).

increased, but the unstable region is expanded to a major degree, intruding into Mack’s
second mode.

As can be seen in Fig. 2(c), with the dual effects of wall-heating and FPG, the new
mode becomes the only unstable mode in the boundary layer. By comparing with Case 1
and Case 2, the new mode has a much larger unstable region in terms of β and ω. Inter-
estingly, it reaches maximum growth rate at β=0 but has smaller growth rate compared
with the conventional modes. Case 2 and 3 are plotted together in Fig. 2(d). It is apparent
that the new mode covers the frequency band of Mack’s second mode and extends to
much higher values.

It is remarkable that the new mode becomes the only unstable modes when dual ef-
fects (wall-heating and FPG) are present. This phenomenon is interpreted in Fig. 3 where
the influence of pressure gradient βp is revealed. Several representative frequencies were
chosen to show the possible unstable modes. The results show that, whether the wall is
heated or adiabatic, it does not change the significant stabilizing effect of FPG on the con-
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Figure 3: Growth rate of 2-D perturbations (β= 0) as functions of pressure gradient βp. (a) Boundary layer

with adiabatic condition (H′w=0); (b) Boundary layer with wall-heating (Hw=1.5).

ventional modes. Both the first mode and Mack’s second mode soon become stable when
FPG increases to βp =0.1. Mack’s second mode is even more sensitive to this parameter.
This is consistent with previous studies as introduced in Section 1. On the other hand,
the new mode starts growing when βp reaches a value of about 0.2. Hence, the new mode
becomes the only unstable mode in the boundary layer with FPG & wall-heating.

The spectrum of high-speed boundary layers has been shown (see reviews by [16,17])
to help the understanding of the excitation of the unstable modes. The synchronization
between Mode F (stems from the fast acoustic wave) and Mode S (stems from the slow
acoustic wave) gives rise to the growth of Mack’s second mode. Detailed comments
on the synchronization were made by [15]. Fig. 4 shows the discrete spectrum (phase
velocity c = ω/αr and imaginary part of the eigenvalue αi) for the three cases at fixed
physical frequency F=ω/Re=2.2×10−4.

Case 1 reproduced the spectrum in conventional adiabatic boundary layers with zero
pressure gradient. At this frequency, Mode S played the first mode and Mack’s second
mode at different sections of Reynolds numbers. The first mode is stable while Mack’s
second mode enters the growth zone when Mode F and Mode S have almost identical
phase velocities (synchronization). When the synchronization is finished (at about Re=
1200), all the discrete modes decay. Case 2 is similar to Case 1 except the first mode has
an unstable section due to wall-heating. The second mode, on the contrary, is stabilized
by manifesting in a reduced overall growth rate.

The new mode appears in Case 3. One can still identify the Mode F and Mode S.
However, Mode F synchronizes with the fast acoustic wave at a much larger Reynolds
number. Synchronization between Mode F and Mode S still caused localized peak val-
ues of αi for each other. Apparently, both modes are far from the unstable half-plane.
Interestingly, the spectrum branching occurs indicating Mack’s second mode has similar
dispersion relation in this case. The new mode seems to stem from the vorticity/entropy
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Figure 4: Spectrum of the 2-D perturbations (β= 0) with frequency F=ω/Re= 2.2×10−4 for Case 1 (a,b);
Case 2 (c,d) and Case 3 (e,f). The thick horizontal lines (in a,c,e) show the phase velocities of the continuous
spectrum: fast acoustic wave (c= 1+1/Ma= 1.22), voticity/entropy wave (c= 1.0) and slow acoustic wave
(c= 1−1/Ma= 0.78). The circles show the synchronization regions. The notations F1, F2,··· , represent the
multiple Fast mode excited consecutively. The symbols in (a) show the results from [12].



J. Ren, Y. C. Xi and S. Fu / Adv. Appl. Math. Mech., 10 (2018), pp. 1057-1068 1065

wave (c=1.0) and remains a phase velocity slightly larger than 1.0. At Re=1826, the new
mode becomes unstable and gains maximum growth rate at Re=3090.

The eigenvectors of the most amplified new mode from Case 3 are shown in Fig. 5(a).
Reynolds number Re= 2000, ω= 0.53 and β= 0. The base flow is plotted as a reference.
The boundary layer can be qualitatively divided into three regions shown in the figure.
Region (1) starts from the wall and is replaced by Region (2) where the overshoot U(y)>1
starts. Region (3) is the inviscid region outside the boundary layer. The perturbations are
mainly distributed in Region (1) and (2) where the baseflow shear exists. As is expected in
most hypersonic cases, temperature perturbation has the maximum amplitude, followed
by the density components. Both perturbations are largely distributed in Region (2). The
velocity perturbation ũ and ṽ though have much smaller amplitudes, are critical for the
transportation of momentum and energy of the fluids. Besides, we show the eigenvector
of the mode S and F in Fig. 5(b) and Fig. 5(c) for comparison. The perturbations of the
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Figure 5: Eigenvector of the new mode (a), mode S (b) and mode F (c) at Re= 2000, ω = 0.53 and β= 0.
Absolute values are shown. The temperature and density perturbations are scaled with factors indicated in the
legend.
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Figure 6: Isolines of the growthrate of the new mode at levels −0.015≤ αi ≤ 0 (αi = 0 indicates the neutral
curve). Re=2000, ω=0.53, β=0, 1.0≤Hw≤1.5, 0.1≤βp≤0.4. Solid (black) lines for T∗0 =329K and dashed
(white) lines for T∗0 =1094K.

mode F mainly locate near the wall while mode S becomes significant near the boundary
layer edge.

To evaluate the potential importance of the new mode in practical flows. We pick the
most unstable mode from Case 3 and study the influence of Hw and βp. Calculations
are conducted with the total temperature of T∗0 = 329K and 1094K respectively. The cor-
responding free-stream temperatures T∗∞ = 65.15K and 216.66K mimic the conditions of
low-enthalpy experiment and flight at the altitude of 11km to 20km. As can be inferred
from Fig. 6, the effects of wall-heating and pressure gradient are complementary with re-
gard to the growth of the new mode. Under flight conditions, the growth rate is slightly
smaller. In both cases, the required minimal wall enthalpy Hw,min=1.157 and the pressure
gradient βp,min =0.187. This implies that the new mode has to meet severe conditions to
become unstable. Particularly, the wall must be heated with additional sources and the
pressure gradient should be large enough. Under flight conditions where the wall tem-
perature can not exceed the adiabatic value, the new mode has no chance to appear. On
the other hand, this mode could be reproduced under experimental (artificial) conditions
where new transition scenario shall be anticipated.

4 Concluding remarks

Inspired by Tunney et al. [24], the viscous instability of the high-speed boundary layer
with the dual effects of favorable pressure gradient (FPG) and wall-heating is studied.
From modal stability analysis, the full stability diagram (in the coordinates of Re−β−ω)
is given and compared with conventional first mode and Mack’s second mode. The new
mode becomes the only unstable modes in such flows where FPG readily suppressed the
conventional modes. The synchronization between the spectrum found in high-speed
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flows [15] remains but is not responsible for the growth of the new mode. Due to the
requirement for additional heating, the new mode can be important only under experi-
mental (artificial) conditions.
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