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A B S T R A C T

In wind resource assessments, which are critical to the pre-construction of wind farms, measurements by
LiDARs or masts are a source of high-fidelity data, but are expensive and scarce in space and time, particularly
for offshore sites. On the other hand, numerical simulations, using for example the Weather Research and
Forecasting (WRF) model, generate temporally and spatially continuous data with relatively low-fidelity. A
hybrid approach is proposed here to combine the merit of measurements and simulations for the assessment
of offshore wind. Firstly a temporal data fusion using deep Multi Fidelity Gaussian Process Regression (MF-
GPR) is performed to combine the intermittent measurement and the continuous simulation data at an onshore
location. Then a spatial data fusion using a neural network with Non-linear Autoregression (NAR) and Non-
linear Autoregression with external input (NARX) are conducted to project the wind from onshore to offshore.
The numerical and measured wind speeds along the west coast of Denmark were used to evaluate the method.
We show that the proposed data fusion technique using a gappy onshore measurement results in accurate
offshore wind resource assessment within a 2% margin error.
1. Introduction

In the past decades, there has been worldwide demand for renew-
able energy, leading to a dramatic expansion in all its sectors, with
a significant fraction generated by wind. There are over 230 GW of
installed wind capacity in Europe as of 2020, consisting of 190 GW
onshore and 40 GW offshore. Additionally, Europe intends to further
the rise in demand for wind energy and its capacity by 35% [1]. Before
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the construction of a wind farm, it is critical to evaluate the wind speed
condition of the location. Since the power is the cube function of wind
speed, minor speed changes can cause large deviations in the output
power. Moreover, the wind varies both geographically and temporally
over a wide range of scales. Therefore, an accurate assessment of the
wind resource for a proposed site is highly essential and is considered
of paramount significance for a wind project to be successful [2,3].
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The assessment also helps to the selection of wind turbines and their
layouts [4].

Physical wind measuring devices include e.g. LiDARs, meteorolog-
ical mast towers, Satellite Synthetic Aperture Radars (SARs), and so
forth. These equipment yield accurate results but are expensive and
the data is commonly sparse in space and time. For example, the SARs
measured wind is at 10 m above the sea surface with low temporal
resolution and only applies to offshore assessments; LiDARs measure
the Line-Of-Sight (LOS) velocity by computing the Doppler shift of the
signal of an infrared laser beam based on the movement of aerosols
and the output is usually intermittent at a fixed location; buoy systems
are expensive and require regular maintenance, redundant systems for
power, measurements, and communication for the measurement at a
given location. On the contrary, numerical simulations result in wind
predictions that cover large geographical areas and long time horizons
continuously, but with relatively low fidelity. The numerical models
include e.g. Weather Research and Forecasting (WRF), Global Fore-
cast System (GFS), and European Centre for Medium-Range Weather
Forecasts (ECMWF) [5].

Such a clear complement of physical measurements and numerical
information suggests data fusion or a hybrid technique to combine the
merit of both. It would be very desirable to extend the information from
coastal online vertical LiDARs for the reconstruction of offshore time
series as they are easier to maintain [6]. This technique can be used to
numerically extend the information from coastal measurements to the
offshore time series with low cost and high accuracy. Such techniques
have been widely used in the prediction of future developments based
on various inputs [7]. For example, Hu and Wang [8] used Empirical
Wavelet Transforms (EWT), Partial Auto-Correlation Function (PACF),
and GPR for wind speed assessments. EWT was employed to extract
the meaningful data from the wind speed series through a customized
wavelet filter bank, and PACF provided the input parameters for the
GPR to simulate dynamic features and internal uncertainties. An alter-
native combination, i.e. Auto-Regressive (AR) and GPR, was followed
by Zhang and Wei [6]. AR was employed to capture the structure of
the wind speed series, and GPR to extract the local structures. As a
supplement, Automatic Relevance Determination (ARD) considered the
importance of using different inputs; thus, various types of covariance
functions were combined to comprehend the characteristics of the data.
This hybrid method outperformed others including Support Vector
Machine (SVM), Artificial Neural Network (ANN), and the persistence
approach. Meanwhile, an improved near-surface wind speed prediction
experiment, which considered the atmospheric stability using GPR com-
bined with Numerical Weather Prediction (NWP), for a time horizon of
72 h, showed that the consideration of atmospheric stability was able
to reduce the estimated errors, thus improving power predictions [2].

Most recently, the Multi-Fidelity Gaussian Process Regression (MF-
GPR) has been demonstrated to significantly outperform the regular
single fidelity model. The strategy of MF-GPR was to go beyond the
regular AR kriging scheme and introduce more than one data set at
different fidelity levels. The first is a high-fidelity, scarce data set which
can be the physically measured one; the second is a low-fidelity, con-
tinuous data set which can be generated from numerical simulations.
The literature in this area further discussed various developments; for
example, the Deep MF-GPR with additional data sets, e.g. first and
second derivatives, phase-shifted oscillations, and different periodicity
data sets leading to drastically improved approximations [9].

Further, wind resource assessments are commonly requested over
a long-time-interval (e.g. a few months or years) and to cover large
areas, therefore requiring spatial–temporal fusion of numerically and
physically measured wind [10]. Apart from the temporal prediction
reviewed above, ANNs are trained and tested on data sets from two
different locations. Cadenas and Rivera, considered the problem of
non-linearity in the time-series using Nonlinear Auto-Regressive with
Exogenous inputs (NARX) [11]. The method was compared with both
2

the persistence approach and Nonlinear Auto-Regressive (NAR). The
results demonstrated that the NARX model was the most precise of the
three and justified the extra input, suggesting that it could be suitable
for spatial data fusion.

Spatiotemporal models which combine the aforementioned tempo-
ral and spatial fusion, have been widely used in the geostatistics field,
where temperature and wind speed were the main variables of concern.
In these models, the temporal extrapolation is performed to predict
the values out of the measured interval at a fixed spatial point [12],
followed by spatial extrapolation to project the estimation to a different
point [13]. This sequential extrapolation in time and space was devel-
oped in the present study for wind resource assessment. Temporal data
fusion of low and high-fidelity data from simulations and measurements
at a given location was performed using deep MF-GPR, and spatial
data fusion using a customized nonlinear autoregressive ANN with
exogenous inputs was conducted thereafter. As illustrated in Fig. 1,
the low fidelity results (e.g from numerical simulations) are assumed
to be available across a continuous domain 𝑋 × 𝑇 , where 𝑋 and 𝑇
are the spatial and temporal domains, respectively. On the other hand,
high-fidelity results (e.g from the LiDAR measurements) are available
in a reduced domain 𝑋𝑟𝑒 × 𝑇𝑟𝑒 where 𝑋𝑟𝑒 is a subset of 𝑋 and can
be discontinuous and 𝑇𝑟𝑒 is a subset of 𝑇 and can be discontinuous.
Thereafter, the objective was to combine the low and high-fidelity
results to reach a data fusion on the full domain 𝑋 × 𝑇 .

The novelty of this work lies on the development of a hybrid
algorithm for the accurate assessment of offshore wind resources with
reduced cost. It combines the generally continuous but low-fidelity
numerical data and high-fidelity but limited physical measurements.
Efforts were also devoted to pre-processing the time series and taking
into account additional information not considered in existing methods
to lift the accuracy of the fusion. This algorithm enables the projection
of limited onshore measurements to offshore locations in light of nu-
merical simulations with significantly higher accuracy than the industry
standard approach.

This paper is organized as follows. In Section 2, we show details
for our methodology for the temporal extrapolation using multi-fidelity
GPR, and spatial extrapolation using NARX algorithms. In Section 3, we
describe the case to be studied and the collection of the high and low
fidelity data. In Section 4, we address the pre-processing technique used
to smooth the given wind speed time-series. In Section 5, we present
the main results and compare the performance of our methods against
the industrial standard before drawing conclusions in Section 6.

2. Methodology

2.1. Temporal data fusion

In this section, we introduce the algorithms for temporal data
fusion by combining the low-fidelity continuous time series and the
high-fidelity intermittent one. The prototype of the Gaussian process
regression is briefly introduced in Section 2.1.1 and then multi-fidelity
GPR is presented in Section 2.1.2. The use of different co-variance
functions such as constant, linear, squared exponential, Matern and
rational quadratic, defines the method of prediction for the Gaussian
process.

2.1.1. Gaussian Process Regression (GPR)
GPR is a non-parametric, stochastic process that follows the

Bayesian approach for regression, working well on small data sets
and having the ability to provide uncertainty measurements on pre-
dictions. Predictions are derived using a probability distribution over
all possible values of a time-series using prior functions 𝑤 of training
points 𝑓 at observed points 𝑡, and targeted values 𝑓 ∗ at unobserved
points 𝑡∗ are calculated from a predictive distribution, 𝑝(𝑓 ∗

|𝑡∗, 𝑓 , 𝑡),
by considering all possible predictions using their calculated posterior
distribution [14]:

𝑝
(

𝑓 ∗
|𝑡∗, 𝑓 , 𝑡

)

= 𝑝
(

𝑓 ∗
|𝑡∗, 𝑤

)

𝑝 (𝑤|𝑓, 𝑡) 𝑑𝑤. (1)
∫
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Fig. 1. Flow chart for spatiotemporal fusion. U1 and U2 represent the wind speed at an onshore and offshore positions, respectively.
To trace the integration process of Eq. (1), all terms of the equa-
tion are assumed Gaussian. The prior function defines the Gaussian
distribution [14]:

𝑓 (𝑡) ∼ 𝐺𝑃 (𝑚, 𝑘(𝑡, 𝑡′)), (2)

where 𝑚 is the mean function, which represents the trend of the
function, and the covariance function (kernel), 𝑘(𝑡, 𝑡′), represents the
dependence of the structure, defined by the hyperparameters [15].

2.1.2. Multi-fidelity Gaussian process regression
In this section, we discuss advanced temporal data fusion using data

with multiple fidelities to enhance the accuracy of prediction. The data
sets are obtained using different techniques mathematically, the multi-
fidelity technique considers the high-fidelity model as a function of two
variables (𝑡, 𝑠) and then uses the low-fidelity data as the 𝑠 variable [14]:

𝑓ℎ(𝑡) = 𝑔(𝑡, 𝑓1(𝑡)), (3)

where in the present work 𝑓ℎ(𝑡) and 𝑓𝑙(𝑡) are the high-fidelity LiDAR
measurements and low fidelity WRF simulations, respectively. Such
non-linear auto-regressive Gaussian process (NARGP) has been ob-
served to produce highly accurate prediction when 𝑓ℎ(𝑡) is non-linearly
dependent on 𝑓𝑙(𝑡), and GPR is then performed in a two-dimensional
space.

To implement this, we adopt the co-kriging model, which uses
multivariate functions with respect to different levels of fidelities to
reflect different accuracies. The additional data set is later introduced
to the Gaussian distribution and we add the terms of the first data set
(𝑡, 𝑠) and the second data set (𝑡′, 𝑠′) while the mean function is zero,
through [14]:

𝑓 (𝑡) ∼ 𝐺𝑃 (𝑚, 𝑘((𝑡, 𝑠), (𝑡′, 𝑠′))). (4)

Merging of two or more sets that are approximately linearly depen-
dent by scaling and shifting parameters was approached by Kennedy
and OHagan [16]. However, due to the presence of nonlinear de-
pendencies generally between the data sets, the quality of results
degraded as a major issue for linear data fusion algorithms. To over-
come and resolve the nonlinear dependencies, space-dependent scaling
factor 𝜌(𝑥) [14] or alternatively, deep multi-fidelity GP [17] was intro-
duced. Yet the improvement brings further optimizations of additional
hyperparameters. Here the NARGP algorithm, an implicit automatic
relevance determination (ARD) weight, is employed in the extended
space, parametrized by 𝑡 and 𝑠, which counts as a different scaling of
the existing hyperparameters for each dimension in the kernel [18].

Additionally, the formulation can be extended through functions of
the low-fidelity data set. The high-fidelity data can be further consid-
ered as a function 𝑡, 𝑓𝑙(𝑡) and the derivatives of 𝑓𝑙(𝑡), exploiting that
𝑓𝑙(𝑡) has a similar trend with 𝑓ℎ(𝑡) [14]:

𝑓ℎ(𝑡) = 𝑔(𝑡, 𝑓𝑙(𝑡), 𝑓 1
𝑙 (𝑡),… , 𝑓 𝑖

𝑙 (𝑡)), (5)

where 𝑓 𝑖(𝑡) is the 𝑖th derivative of the low fidelity data.
3

𝑙

2.2. Spatial extrapolation

As aforementioned the target is to predict offshore wind indirectly
from onshore measured wind. Therefore apart from the temporal fusion
algorithms presented above, a spatial extrapolation is required. Here a
time series neural network is adopted to link the wind speed at the
two points using a single variable nonlinear network NAR along with
NARX to have a fair performance comparison. In practice, low-fidelity
WRF data will be used to train the network and onshore hybrid solution
(obtained by temporal fusion) is served as input to estimate the offshore
wind.

2.2.1. Nonlinear Autoregression (NAR)
The NAR model is most suitable for time-series predictions where

the main source of training data is only past values of the time series
itself, and this process is called feedback delays. The network is trained
in an open loop, which uses the real target values as a response.
Following, the network becomes a closed-loop, and the predicted values
are used as new response inputs to the network. The framework of this
model is seen in Fig. 2(a), a multi-layer network where the left hand
side is the past delayed input values 𝑦(𝑡−1), 𝑦(𝑡−2), and 𝑦(𝑡− 𝑝) is used
to obtain the independent variable 𝑦(𝑡). Optimization of the network
aims to reduce the number of synapses (weights) and neurons, and
subsequently reducing the complexity of the network, and maintaining
the generalization capabilities.

2.2.2. Nonlinear Autoregression with External Input (NARX)
NARX is a dynamically guided type of recurrent ANN containing

one or more feedback loops. The loops can be either local or regional,
and the use of regional loops enables a significant reduction of memory.
Recurrent networks are being used for two main functional tasks, first,
for associative memory tasks and second, for input–output mapping
networks. The applications of input–output mapping networks include
modelling and signal predictions for time-series [19]. The learning
algorithm for the NARX network is based on the performance function
used in the training of ANN, which is the mean squared error (MSE).
NARX neurons are sigmoid and the performance function is derived to
include a mean squared weight function with a performance ratio. As
a result, the performance function operates under smaller weights and
biases, thus causes the network response to be much smoother and less
likely to over fit.

Learning in NARX networks is more efficient and effective than in
other neural networks, since it has a better descending gradient, which
leads to much faster convergence and better generalization than other
networks. The model predicts a series 𝑦(𝑡) given specific past values of
𝑦(𝑡) and an additional input series 𝑥(𝑡) as shown in Fig. 2(b), where
the NARX architecture is illustrated. The model has only one input, the
exogenous variable 𝑥(𝑡), providing feed-forward to a 𝑞 delayed memory
neurons, and one output, 𝑦(𝑡 + 1), which is the value of the predicted
variable one step ahead. Dynamically, this can be expressed by [11]:

𝑦(𝑛 + 1) = 𝐹 (𝑦(𝑛), 𝑦(𝑛 − 𝑞 + 1), 𝑢(𝑛), 𝑢(𝑛 − 𝑞 + 1)), (6)
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Fig. 2. (a) Architecture of the NAR (nonlinear autoregressive) model with a multi layer perception. (b) Framework for NARX model with an exogenous variable 𝑥 as the input. 𝑞
past values of 𝑥 and 𝑦 are considered for the prediction of 𝑦(𝑡 + 1).
Since the input is one step behind the output with respect to time,
the output can provide feedback to the network through the delayed
memory neurons, which in turn makes up the input neural layer of a
multilayer network.

The learning algorithm for the NARX network is based on the
performance function used in the training of ANN, which is the mean
squared error (MSE). NARX neurons are sigmoid and the performance
function is derived to include a mean squared weight function with a
performance ratio. As a result, the performance function operates under
smaller weights and biases, thus causes the network response to be
much smoother and less likely to over fit.

As it was proven essential to have at least two-thirds of the data
for training, the data is partitioned to 60, 20 and 20 percents for
training, validation and testing, respectively. We constructed 10 hidden
neurons with 2 delays, and adopted the Bayesian regularization as the
training algorithm which trades off more computational costs for better
accuracy [11].

3. Case description

To test the methods, we consider a case associated with the RUNE
project, which was a near-shore experiment conducted at the west
coast of Denmark (see Fig. 3(b)). The surrounding area is nearly flat
coastal farmland and moving northwards from position 1 to 3, the sand
embankment separating the North Sea and the grasslands transforms
into cliffs covered by grass. In this work, we use dual-Doppler scans
performed nearly perpendicular to the coast from about 5 km offshore
to 2 km onshore. These scans were performed by synchronizing mea-
surements from two scanning LiDARs, which are modified versions of
WLS200S Leosphere units, one located at position 1 and the other at
position 3. Here, we use the dual-Doppler scans performed at 50 m
above mean sea level (amsl) during the period 2015-12-08 to 2016-
02-17. Due to filtering of high noise/low signal strength and system
availability, only 114 10-min are available at all the dual-Doppler
positions shown as black markers in Fig. 3(a). Further details with
regards to the experimental campaign and the instrumentation can be
found in [20].

Here we use a numerical experiment, which was part of a number
of numerical simulations performed using the WRF model v3.6 to sup-
plement the measurements of RUNE [21]. This particular experiment
was setup with 4 nested domains, the outermost covering northwestern
Europe and a 2-km horizontal resolution innermost domain covering
the west coast of Denmark. Spectral nudging to the ERA5 reanalysis
4

is used in the upper model levels of the outermost domain. The simu-
lation had 8 vertical levels within the first 100 m and instantaneous
output was produced every 10 min. The experiment also used the
Mellor–Yamada–Janjic planetary boundary layer scheme, a sea surface
temperature product from the Danish Meteorological Institute [22], and
the CORINE land cover description. An illustration of the low fidelity
WRF simulation data set of the most onshore point can be seen in
Fig. 4(a), while Fig. 4(b) shows the high fidelity LiDAR measurements
for the same point.

4. Data preprocessing

EWT is a three-model decomposition algorithm used in forecasting,
and has been used to achieve good forecasting results for non-stationary
time series such as wind speed series [8]. EWT can extract meaningful
information from the series by designing appropriate wavelet filter
banks. In our study, pre-processing of the WRF time series generated
by ERA-5 can adaptively represent the processed signal by generating
the adaptive wavelet and then decomposing the signal into a finite
number of modes as per previous literature. The algorithm is based
on identifying and extracting the different intrinsic modes of a time-
series, by relying on robust pre-processing for peak detection, and
then performs spectrum segmentation based on detected maxima to
construct a corresponding wavelet filter bank.

The WRF series that were pre-processed using EWT are 1) the WRF
series at the most onshore point used in Hybrid (3) of the Multi-fidelity
GPR in Fig. 5, panel (c), and 2) the WRF series for the 36 points
generated by the dual-Doppler scans used for Hybrid (3) in Fig. 6.

The process can be divided into five steps [8]:

1. Extending the signal.
2. Fourier transforms.
3. Extracting boundaries.
4. Building a filter bank.
5. Extracting the sub band.

The original wind speed signal had considerable high-frequency
fluctuations. The three-level decomposition attained by the EWT al-
gorithm describes the wind speed series in a meaningful way. Three
uncorrelated filter modes were extracted from the wind speed series
and a residual was also obtained from the extraction. The reconstructed
wind speed series shows a significant decrease in fluctuations and will
be served as input to the third GPR model.
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Fig. 3. (a) RUNE experimental area. Positions of the LiDARs are shown in red square markers and the dual-Doppler scans in black and red dot markers. The colour bar indicates
the terrain elevation in metres above mean sea level. (b) The location of the RUNE experiment (black rectangle) in Denmark.
Fig. 4. (a) Low-fidelity data from numerical simulation (WRF) at the most onshore point, (see Fig. 3). (b) High-fidelity data from the dual-Doppler LiDAR setup at the most
onshore point, (see Fig. 3).
Table 1
Configurations and accuracy of the GPR models.

Model Basis and Kernel functions RMSE [m/s]

WRF – 1.24
Hybrid (1) Zero, Matern 5/2 1.15
Hybrid (2) Constant, Rational quadratic 1.01
Hybrid (3) Zero, Matern 3/2 0.86

5. Results

5.1. Temporal data fusion

The different data sets at the furthest onshore point of the dual-
Doppler line were merged by applying MF-GPR. The performance of the
three models was optimized, through the hyperparameters, by applying
30 iterations of basis and kernel function combinations, including: Zero,
Linear, Constant and Matern 5/2 and 3/2; Rational Quadratic, squared
Exponential, etc. Firstly, we explored the original model, represented
as Hybrid (1), where the input information was low and high-fidelity
data sets. Then, we showed that introducing additional information
sets, which are functions of the low fidelity data set (first and second
derivatives) can enhance the accuracy of predictions, hence Hybrid (2).
The third model, Hybrid (3), involved pre-processing of the training
set using the EWT reconstruction algorithm, the regenerated first and
second derivative sets of the low fidelity data, and finally the North
and East decomposed wind speed vector components. A higher drop in
RMSE was noted from the Original WRF data.
5

Table 1 shows the configuration and performance of NAR and
NARX for the training of the network. The highest performing NAR
and NARX configurations consisted of 3 delays, 15 neurons and 4
delays, 12 neurons, respectively, which implied that the latter required
less statistic training. Despite hiring a lower number of neurons, the
NARX network required less computation time to outperform the NAR
network by 12%.

Fig. 5(a), (b) and (c) show the time series of the results from the
three hybrid models, respectively. Hybrid (1) showed a 9% decrease in
RMSE from WRF data, in Hybrid (2) the RMSE was reduced by about
18%, and finally Hybrid (3) showed the largest drop compared to other
hybrid models, about 31%. Besides, panel (d) reflected a cut off to the
interval between the hours 500–600 since the start of the experiment,
with an 80% confidence interval, showing a better visualization of the
performance. Finally, panel (e) presents the deviation error between the
provided high-fidelity time series of 114 points with their predicted
counterparts by the hybrid techniques. It can be seen that for some
points, Hybrids (1) and (2) outperform each other with deviations
ranging from 6 to 2 m/s. On the other hand, the performance of
Hybrid (3) outperformed the other two at almost all measured points
with the deviation capped at 2 m/s and mean deviation 0.6 m/s.
These results substantiate that increasing the number of additional sets
and pre-processing the data enhanced the accuracy of the Gaussian
process [14].

Furthermore, we evaluate the performance of the hybrid methods
against the software Windographer, the leading industrial software
for importing, visualizing and analysing wind resource data. Win-
dographer follows the Measure–Correlate–Predict (MCP) algorithms
including Linear Least Squares (LLS); the method is on correlating
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Fig. 5. (a), (b) and (c) represent temporal data fusion results for Hybrids (1), (2) and (3), respectively. (d) Cut-off panel for Hybrid (3) from 500 to 600 h of the experiment and
(e) Error in all three hybrid models against 114 LiDAR measurements.
target and reference speed data, based on the linear least squares
procedure. The RMSEs for each of the 36 dual-Doppler points from
the furthest offshore point to the most onshore one using all 3 hybrid
methods and the industrial software are shown in Fig. 6.

On average, Hybrids (1), (2), and (3) were able to perform 12%,
14%, and 60%, respectively, more accurate than the industrial soft-
ware. In addition, the hybrid methods showed a higher consistency in
predictions that occurred offshore, where the industrial software had
a relatively poor performance. Moreover, the highest RMSE for the
hybrid methods was observed at 446 km easting, where the transition
from offshore to onshore takes place. On the other side the industrial
software was not affected, and the performance of the predictions was
consistent.
6

5.2. Spatial data fusion

The spatial data fusion aimed to project the onshore measurements
to offshore locations in light of numerical simulations, to reduce the
cost of direct offshore measurements. The first and last offshore and
onshore points in the 36 dual-Doppler line were considered as an
example. An ANN was trained using the low-fidelity WRF data at
both points, and it configured the winds relation at both points. The
network was later tested on the high-fidelity LiDAR data of the onshore
point and generated high fidelity wind speed results for the offshore
point [15].

For the NARX model, eleven simulations were performed varying
the number of past values (delays) for the entry variables from 1 to
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Fig. 6. RMSE curve across Windographer and all three hybrid models for all 36
dual-Doppler points.

10, and the number of hidden neurons from 3 to 21. The MSE of
the test data set was used to assess the performance of the network,
the configuration with the best performance was employed. The same
number of simulations were carried for the NAR model; similarly, the
past values varied from 1 to 10 and the hidden neurons from 3 to 15
and the configuration with the lowest MSE was selected.

Table 2 shows the configuration and performance of NAR and
NARX for the training of the network. The highest performing NAR
and NARX configurations consisted of 3 delays, 15 neurons and 4
delays, 12 neurons, respectively, which implied that the latter required
less statistic training. Despite hiring a lower number of neurons, the
NARX network required less computation time to outperform the NAR
network by 12%.

Fig. 7(a) shows the results from testing the NARX network using
the LiDAR measurements along with low-fidelity WRF data and high-
fidelity LiDAR measurements of the most offshore point. Predicted
values from the network were more accurate than the low-fidelity data,
where the RMSE was reduced from 1.23 m/s to 1.17 m/s. For a zoomed-
up visualization of results, the data-rich high-fidelity section at hours
500–600 is shown in Fig. 7(b).

5.3. Spatio-temporal extrapolation

In this section, we combined temporal and spatial data fusion using
1331 10 min LiDAR measurements. The aim was to use the intermittent
7

Table 2
Configurations of the NARX and NAR Networks with the Best Performance.

Model Delays and Neurons Time steps MSE (×10−2)

NAR 3, 15 Training (6176) 1.352
Validation (2058)
Test (2058) 1.559

NARX 4, 12 Training (6176) 1.241
Validation (2058)
Test (2058) 1.188

measurement at the second most onshore point to estimate the wind at
the most offshore point by exploiting the numerical data.

Temporal data fusion was performed following the same technique
as Hybrid (3) of MF-GPR from Section 2.1.2, we used the reconstructed
set from the EWT algorithm for pre-processing and five predictors for
the GPR algorithm: low-fidelity WRF data, first and second derivatives,
North and East vector components of the wind speed set of the onshore
point. Again, 30-iterations were used to optimize the hyperparameters,
varying the basis and kernel functions to achieve a configuration with
an RMSE of 0.84 m/s.

Following, a NARX neural network was trained using the low-
fidelity WRF data of both the second most onshore and most offshore
points with 3 delays and 12 hidden neurons. The network was later
tested on the time series generated from the temporal section using MF-
GPR and the performance of the network was estimated at an MSE of
1.12 ×10−2.

Fig. 8(a) shows the final curve of the spatial–temporal data fusion
process, high-fidelity LiDAR data (hidden in the assessment), and 80%
prediction intervals. In addition, Fig. 8(b) is a cut-off to show the
region with the richest LiDAR data, the results were satisfactory, as it
achieved an accurate result with an RMSE 1.23 m/s impersonating the
high-fidelity data of the most offshore point without discontinuity or
using expensive LiDARs offshore. These results outperformed the WRF
simulation at the offshore location where the RMSE was 1.46 m/s.

6. Conclusions

In this work, we performed data fusion of numerical model results
from WRF simulations (low fidelity), continuous in space and time with
LiDAR measurements sparse in time and space (high fidelity) to obtain
a spatial–temporal extrapolation, suitable for the assessment of offshore
wind. The RUNE experiment performed dual-Doppler scans which gen-
erated 114 10-minute measurements over three months for the present
spatial-only and temporal-only data fusion, and 1331 10-minute mea-
surements for the present spatiotemporal experiment. Simultaneously,
Fig. 7. (a) Spatial data fusion results for the offshore point. (b) Close-up of spatially predicted data and high and low-fidelity data for validation.
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Fig. 8. (a) Response for Spatio-temporal data fusion. (b) Close-up of the final spatiotemporal results ranging from hours: 3400–4000.
numerical simulations performed using the WRF model v3.6 generated
an instantaneous output every 10 min for the same period of 3 months.

For time-domain data fusion, we were able to represent the high-
fidelity data at unobserved regions and periods by exploiting the
low-fidelity data and its functions. The addition of extra information
data sets (derivatives and wind speed vector components) and pre-
processing showed an improvement in the prediction performance in
terms of RMSE, with a 30% average drop compared to other models
that ignored them. For the spatial fusion part of the experiment, simi-
larly, adding extra information data sets to the NARX neural network
showed improvements compared to the single input model NAR. The
data from the network had a lower MSE for assessing offshore data,
which could avoid sending expensive equipment offshore.

Following data fusion in both space and time, the models were
re-run at the optimized configuration of each method: Data from the
second most onshore point underwent Hybrid (3) MF-GPR for time-
domain data fusion, and the continuous time series output was used
along with data from the offshore point for space domain data fusion.
Finally, the spatial–temporal data fusion resulted in accurate offshore
wind resource assessments within a 2% margin error for wind speed.

There are two major limitations in this study that could be ad-
dressed in future research. First, the study focused on data obtained
from the RUNE experiment, which included only 1331 measured points
from LiDAR equipment equivalent to 220 h of measured data, scattered
across the entire 3 months period of the experiment, which means a
lot of weeks are empty. On the other side, the WRF simulation covered
the entire duration with almost 10,500 points. This limited access to
high-quality data is a result of low availability of LiDARs, which is
due to the harsh weather conditions offshore that often damage the
equipment. The rareness of LiDAR data can influence the GPR, which
makes it harder to captures trends and meaningful relations.

Second, the most onshore and offshore points of the 36 dual-Doppler
were selected from the experiment. However, due to the low resolution
of WRF (2 km), interpolation is necessary to obtain WRF data at
corresponding points, which reduces the accuracy of predictions.

Future work also concerns further development to the multi-fidelity
data fusion algorithm, by introducing additional sources of data gen-
erated by different equipment or software. An example of this is the
use of a second WRF simulation with different resolutions and features.
Nevertheless, concerning the results for one point-based prediction, we
can also expect to perform 3-dimensional area predictions with respect
to time, by performing data fusion of multiple LiDAR measurements at
different locations with full grid WRF simulation results.
8
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