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The development of free-stream disturbances in flow over a vertically vibrating flat
plate with a slender leading edge is investigated. The evolution of the optimal inflow
perturbation that results in the maximum amplification is computed to investigate the
effect of the plate vibration on the development of free-stream disturbance, secondary
instability of streaks and subsequently the bypass transition to turbulence. It is observed
that the plate vibration leads to periodic change of the angle of attack, shifting the
free-stream disturbance to the upper or lower side of the plate. Therefore, the development
of steady inflow perturbations, which receive the largest amplification, is interrupted by
the vibration, and the perturbation amplification via the lift-up mechanism is weakened.
The vibration brings a second peak of perturbation growth at the vibration frequency,
leading to high-frequency free-stream perturbations penetrating into the base boundary
layer, which is not observed in flow over a stationary plate owing to the sheltering
mechanism. This resonance of the flow perturbation and the vibrating plate is explained by
the staggering effect of the leading edge. Further, the direct numerical simulations with
the optimal inflow perturbation imposed on the inflow boundary show that the vertical
vibration of the plate leads to streamwise periodic vorticity near the edge of the boundary
layer. This inhomogeneity of the streamwise vorticity brings about streamwisely localized
distortion of the low-speed streaks and, thus, an intermittent secondary instability.
Therefore, before the streaks break down to turbulence, they undergo several rounds of
secondary instabilities, resulting in an elongated bypass transition process.

Key words: transition to turbulence, flow–structure interactions, boundary-layer stability

1. Introduction

Bypass transition in boundary-layer flow receives its name mainly from the bypass of
Tollmien–Schlichting (TS) waves (Morkovin 1969). This scenario of transition occurs
when the turbulence intensity level of the free-stream disturbance is above 0.5 %. Research
on bypass transition is far-reaching in boundary-layer flow around fixed streamlined bodies
such as flat plates, airfoils and turbine blades, focusing on the development of large
and streamwisely elongated coherent structures, namely, the velocity streaks (Kendall
1985; Westin et al. 1994; Alfredsson & Matsubara 1996). The present work addresses
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bypass transition in flow around a vibrating flat plate, which is of significant importance
as vibrations and resonances in fluid–structure interactions are ubiquitous in nature
and engineering applications (for example, the boundary-layer flow around a vibrating
aircraft wing). In the following, previous studies on bypass transition and flows around
vibrating bodies are reviewed briefly in §§ 1.1 and 1.2, respectively, before introducing the
motivation of the present work in § 1.3.

1.1. Bypass transition in boundary-layer flow
The early stage of bypass transition in a boundary-layer flow involves the interaction of
incoming disturbances with the laminar shear profile via the lift-up mechanism, giving
rise to amplified streamwise-elongated velocity streaks (Landahl 1975, 1980), as being
addressed in parallel flows (Butler & Farrell 1992; Reddy & Henningson 1993) as well
as in non-parallel flat-plate boundary-layer flow (Andersson, Berggren & Henningson
1999; Luchini 2000; Monokrousos et al. 2010). In the lift-up, the streamwise vorticity
perturbations displace low-momentum fluid upwards and sweep the high-momentum
fluid toward the wall, thus creating the low- and high-speed streaks. This evolution of
perturbations from streamwise vorticity to streamwise velocity is clearly non-modal, and
therefore transient growth analyses have been applied extensively to compute the optimal
inflow or initial disturbances that lead to the strongest generation of streaks. The spanwise
wavenumber of the optimal perturbation calculated from the transient growth analyses
is consistent with experimental observations (Matsubara & Alfredsson 2001; Mandal,
Venkatakrishnan & Dey 2010; Nolan & Walsh 2012) and direct numerical simulations
(DNS) (Jacobs & Durbin 2001; Nagarajan, Lele & Ferziger 2007). Applying the transient
growth analyses method, Brandt et al. (2011) found that the optimal perturbation growth
via the lift-up mechanism is robust and insensitive to the modification of the base shear. It
is also found that the lift-up effect maximizes when the streamwise vorticity is steady and
degrades at increasing frequency of this vorticity (Monokrousos et al. 2010; Wang, Mao
& Zaki 2019). The appearance of the steady or low-frequency streaks is further explained
by the shear sheltering mechanism in the boundary layer (Hunt & Durbin 1999; Zaki &
Saha 2009).

After the formation and amplification of streaks via the linear lift-up mechanism,
the next stage of bypass transition is the nonlinear deformation of streaks and their
secondary instabilities. The interaction between the streaks and the streamwise vorticity
lifts the low- (or high-)speed streaks away from (or towards) the wall via a nonlinear
lift-up mechanism, resulting in a mean shear profile with an inflection point, which is
prone to shear flow instabilities (Mao et al. 2017). The lifted low-speed streaks are also
exposed to the high-frequency free-stream disturbances near the top of boundary layer,
activating secondary instabilities of streaks (Jacobs & Durbin 2001; Brandt, Schlatter &
Henningson 2004; Zaki & Durbin 2005). Swearingen & Blackwelder (1987) identified
two types of secondary instabilities of streaks in Görtler flow: sinuous mode and varicose
mode, referring to spanwisely symmetric and asymmetric forms of the unstable modes,
respectively. These two types of instability are confirmed in the experiments using dye
visualization (Matsubara & Alfredsson 2001; Asai, Minagawa & Nishioka 2002; Mans
et al. 2005) and a simultaneous dual plane particle image velocimetry measurements
technique (Balamurugan & Mandal 2017). Sinuous instability occurs at the top of the
boundary layer and is related to the velocity inflection point in the spanwise direction.
The varicose counterpart occurs at the overlapped region of high- and low-speed streaks
and is related to the inflection point in the wall-normal direction (Zaki & Durbin 2006).
In general, the sinuous mode is more common and dangerous because it occurs at lower
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streak amplitude (26 % of the free-stream velocity), compared with 37 % of the free-stream
velocity for the varicose mode (Andersson et al. 2001). Considering the height of the
critical layer from the wall, Vaughan & Zaki (2011) classified the instabilities of streaks
into another two types: inner mode and outer mode. The outer mode is related to the
secondary instability of the lifted low-speed streaks, whereas the inner mode resides near
the wall resembling the classical TS waves. They also reported a much smaller critical
amplitude of streak (15.2 % of the free-stream velocity) to activate the outer mode (sinuous
type) secondary instability because the spanwise shear is stronger for the same streak
amplitude in their case. Further development of the secondary instabilities will induce the
breakdown of streaks and generation of turbulent spots, leading to the bypass transition to
turbulence.

1.2. Vibration of solid body and its induced flow instability
The studies of fluid flows around a vibrating solid body and the associated fluid and
structure interactions are rich. The vibration can be in the streamwise, wall-normal or
spanwise directions. Early studies mainly focused on flows around bluff bodies, e.g.
circular cylinders vibrating in the cross-flow direction, addressing the interaction of
the body motion with the downstream vortex shedding (Riley 1965, 1967; Olinger &
Sreenivasan 1988). In boundary-layer flow, Spalart (1989) found that the continuously
changing mean flow direction suppressed the streak-like elongated structure. Later,
Jung, Mangivacchi & Akhavan (1992) studied the turbulent channel flow with the wall
vibrating in spanwise direction, and reported a drag reduction up to 40 %. Inspired by
Jung et al. (1992), the spanwise wall vibration is further investigated extensively for
turbulence suppression and drag reduction (Laadhari, Skandaji & Morel 1994; Baron
& Quadrio 1996; Karniadakis & Choi 2003). Choi (2002) demonstrated that the wall
vibration weakens the transportation of high-speed fluids toward the wall, hampering the
stretching of the quasi-streamwise vortices in the near-wall region, and thereby reducing
the streamwise vorticity. Consequently, the near-wall burst event is weakened and turbulent
skin-friction is reduced. The effect of the spanwise wall vibration on turbulent streaks was
studied by Touber & Leschziner (2012). They found that the spanwise distortions of streaks
caused by oscillatory wall motion disrupt the wall-normal momentum exchange.

Apart from the aforementioned literature on turbulent flow over vibrating bodies, the
influences of wall vibration on the growth of perturbations in pre-transitional boundary
layer have been studied more recently. Hack & Zaki (2014, 2015) showed that in flow over
a spanwise vibrating wall, streaks are weakened because the lift-up effect is hindered in
the boundary layer and subsequently the transition to turbulence was delayed. Performing
a non-modal stability analysis, the same authors concluded that the weakening effect
can be further attributed to the formation of a pressure field redistributing energy from
wall-normal to spanwise velocity perturbations. Similar weakening of the lift-up has
been reported by Ricco (2011) by examining the amplification of streaks under steady
spanwise wall forcing. In addition to the lift-up weakening effect, vibration of the wall also
introduces an inviscid cross-flow-type instability, which is related to the inflection points
in the spanwise velocity profile. This type of instability overwhelms the lift-up mechanism
and promotes transition at high amplitudes of wall vibration (Hack & Zaki 2015). It is also
noted that the spanwise vibration frequency affects the thickness of the Stokes layer and an
acceleration of transition was observed at small forcing frequencies (Hack & Zaki 2014).

As reviewed previously, most of the work on boundary-layer flow over vibrating
surfaces focus on the spanwise wall vibration. The effects of vertical wall vibration
on the development of free-steam perturbations, bypass transition and turbulence in
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boundary-layer flow are still unclear, even if this fundamental problem resides in a large
number of practical cases such as flow around vibrating wings, turbine blades and bridges.
On the other hand, vertical forcing introduced on the wall surface has been investigated
extensively, but most of them focused on wall blowing or suction (Choi, Moin & Kim
1994; Fransson & Alfredsson 2003; Pamiès et al. 2007; Kametani & Fukagata 2011; Xiao
& Papadakis 2019). Such forcing was found to be able to offset the wall-normal velocity,
thus counteracting the motion of streamwise vortices (Choi et al. 1994).

When the leading edge is taken into consideration, the vertical vibration of wall
introduces time-dependent angle of attack, which affects the pressure gradient on wall
and the curvature of streamlines near the leading edge (similar to the case of pitching
airfoil). The streamwise pressure gradient in boundary layer has been shown to have key
effects on the growth of perturbations (Zaki & Durbin 2006), whereas the curvature
of streamlines tilts and stretches the free-stream vorticity at leading edge to generate
streamwise vorticity and subsequently streaks (Schrader et al. 2010). In the study of
leading edge receptivity to sound, it has been found that when the incidence angle is 15◦,
the receptivity coefficient is more than three times larger than that in the symmetric case
(Hammerton & Kerschen 1996; Fuciarelli, Reed & Lyttle 2000).

1.3. Motivation
As presented previously, the vibration of a solid body imposes prominent effects on
the flow around it by altering the stability of the fluid–structure system, perturbation
development, laminar–turbulent transition, etc. These findings suggest that the vertical
vibration of the plate can affect the growth of disturbances inside the boundary layer and
change the process of bypass transition. This is a critical problem when modelling or
simulating the bypass transition in engineering applications (e.g. predicting the transition
point in flow around a vibrating wing) but has not been studied in previous research.
Therefore, the present work has been motivated to address: (i) how the vertical vibration
affects the linear lift-up mechanism, the generation of streaks induced by free-stream
disturbance and the shear sheltering of the boundary layer to high-frequency perturbations;
(ii) if the inflow perturbation developments resonate with the wall vibration; (iii) how the
vibration affects the nonlinear deformation and secondary instability of streaks and the
bypass transition.

In the following, the theoretical formulation is given in § 2, followed by the
computational set-up in § 3; the results from linear perturbation analyses are detailed in
§ 4; the nonlinear response of the boundary-layer is reported in § 5; the final conclusions
are drawn in § 6.

2. Governing equations and numerical algorithms

An incompressible flow with free-stream velocity U∞ over a flat plate with half
thickness R is considered and all the following variables are non-dimensionalized by
U∞ and R. In the inertial Cartesian coordinate system, x̃ = (x̃, ỹ, z̃)T represents the
streamwise, vertical and spanwise directions, respectively and the plate vibrates in the
vertical direction with a velocity

vw = (0, A sin(ωwt + φ), 0)T, (2.1)

where A, ωw and φ are the magnitude, frequency and phase of the vibration, respectively.
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FIGURE 1. Schematic diagram of the computation domain, boundary conditions and the
coordinate frameworks.

In the rest of this paper, we adopt a body coordinate system attached to the plate denoted
as x = (x, y, z)T (see figure 1). The variables in the body framework satisfy

x +
∫ t

0
vw dt = x̃, (2.2a)

p = p̃, (2.2b)

u + vw = ũ, (2.2c)

where u = (u, v, w)T and p are the velocity and pressure of the fluid in the body framework
x, respectively; and ũ and p̃ are the velocity and pressure in the inertia framework x̃,
respectively.

Then u and p are solutions of the incompressible Navier–Stokes (NS) equations
expressed in the body framework:

∂tu + u · ∇u + ∇p − Re−1∇2u + ∂tvw + vw · ∇u = 0, (2.3a)

∇ · u = 0, (2.3b)

where Re is the Reynolds number based on U∞ and R. The last two terms on the left-hand
side of (2.3a) are non-inertial terms induced by the vibration.

The velocity vector and the pressure can be decomposed as the sum of a base state
(U, P) and a perturbation state (u′, p′), (u, p) = (U, P) + (u′, p′). When the amplitude of
the perturbation is sufficiently small, the development of perturbations can be described
by the linearized NS equations

∂tu′ + U · ∇u′ + vw · ∇u′ + u′ · ∇U + ∇p′ − Re−1∇2u′ = 0, (2.4a)

∇ · u′ = 0, (2.4b)

which can be written compactly as ∂tu′ − L(u′) = 0 with L denoting a linear operator
depending on the base state.

To study the effects of free-stream disturbance on bypass transition, perturbations are
introduced into the domain from the inflow boundary in the form of the velocity boundary
condition of (2.4), and the initial condition of u′ is set to zero. This inflow perturbation is
a function of both space and time and can be decomposed as

u′(x in, t) = G(t)u′
in(x in), (2.5)

where u′
in(x in) is the spatial dependence of the perturbation, x in denotes the

inflow boundary and G(t) is a prescribed temporal function given by (1 − e−100t2
)
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(1 − e−100(To−t)2
)eiωt in which the first and second terms ensure that the initial condition and

boundary condition are compatible (Mao, Blackburn & Sherwin 2013), and ω specifies the
frequency of the inflow perturbation.

The amplification of the inflow perturbation in the boundary-layer flow can be described
by

K(To) =

∫
Ω

u′(To) · u′(To)dΩ∫
xin

u′
in · u′

in dS
, (2.6)

where Ω represents the upper half of the fluid domain and To is the final time. Unless
otherwise stated, To is set to 180 in this work, as applied by Wang et al. (2019). The
lower half is symmetric with the upper half and this definition of K takes into account the
perturbation amplifications over the upper half only so as to concentrate the resolution on
the upper boundary layer.

To quantify the impact of the wall vibration on the inflow perturbation developments,
we compare the maximum value of K, denoted as Kmax , for the vibrating and non-vibrating
cases. Clearly this will result in a more robust evaluation of the vibration effect than
adopting a random inflow noise. The optimal perturbation is regarded as the most
critical component in the broadband free-stream disturbance. The consideration of optimal
perturbation highlights the influence of vertical vibration of the wall on the variation and
evolution of the key component of broadband disturbance. To compute this optimal value
and the corresponding inflow perturbation, we define a Lagrangian functional:

L = K(To) − 1
To

∫ To

0

∫
Ω

[u† · (∂tu′ − L(u′)] dΩ dt, (2.7)

where u† is the adjoint velocity, the first term on the right-hand side is the objective
function to be maximized and the second represents a constraint that the perturbation
satisfies the governing equations (2.4). Setting the variations of the Lagrangian functional
to zero and after integration by parts, a set of adjoint equation is obtained,

∂tu† + (U + vw) · ∇u† − ∇U · u† − ∇p† + Re−1∇2u† = 0, (2.8a)

∇ · u† = 0, (2.8b)

where p† is the adjoint pressure and the initial condition for the adjoint velocity is given
by

u†(To) = 2u′(To)∫
xin

u′
in · u′

in dS
. (2.9)

The gradient of the Lagrangian functional with respect to the inflow perturbation is given
by

∇u′
in
L =

−2
∫

Ω

u′(To) · u′(To)dΩ(∫
xin

u′
in · u′

in dS
)2 u′

in + 1
To

∫ To

0
(p†n − Re−1∇nu†)G dt, (2.10)

where n is the unit outward norm of the inflow boundary.
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Boundary Conditions for u u′ u†

Inflow u = (1, −A sin(ωwt + φ), 0)T u′ = (0, 0, 0)T u† = (0, 0, 0)T

Outflow ∇nu = 0 u′ = (0, 0, 0)T Re−1n · ∇u† + n · Uu† = 0
Far-field ∂u/∂y = 0, ∂w/∂y = 0,

v = −A sin(ωwt + φ)

u′ = (0, 0, 0)T u† = (0, 0, 0)T

Flat plate u = (0, 0, 0)T u′ = (0, 0, 0)T u† = (0, 0, 0)T

TABLE 1. Summary of boundary conditions.

A gradient-based iterative optimization algorithm is used to find the optimal inflow
perturbation. When the gradient of the Lagrangian with respect to the inflow perturbation
vanishes, the obtained inflow perturbation is the optimal one generating the most energetic
perturbations in the boundary-layer flow, and the corresponding K takes the maximum
value Kmax . Further details of the algorithm can be found in Mao et al. (2013).

3. Computation set-up

The computation domain is shown in figure 1. The inflow boundary locates at x =
−20 and the outflow boundary is at x = 200. In the wall-normal direction, the domain
spans from y = −40 to y = 40. The leading edge of the two-dimensional (2-D) plate is
located at (0, 0, 0)T. The streamwise length of the plate is l = 200 for most of the studies
and is extended to 300 for the investigation of transition, and its half-thickness is used as
the characteristic length. In the spanwise direction, a complex Fourier decomposition is
applied to the perturbation velocity:

u′(x, y, z) =
∞∑

β=0

u′
β(x, y)eiβz. (3.1)

The base flow is a 2-D solution of the NS equations (2.3). It is unsteady owing to the
periodic vibration of the plate and snapshots of the velocity field are saved after reaching
a periodic state when solving the 2-D NS equations. A Lagrangian interpolation is used
to reconstruct the base flow U at every time step when solving (2.4) and (2.8) (Mao,
Sherwin & Blackburn 2011). In the linear regime, perturbations with different spanwise
wavenumbers are decoupled and can be simulated independently. A spectral element
method is used to discretize the governing equations in the x–y plane (Karniadakis
& Sherwin 2007). In this work, the domain is decomposed into 3835 elements and
each element is further decomposed into a (N + 1)(N + 1) grid, where N represents the
polynomial order of the spectral discretization.

A summary of boundary conditions is given in table 1. Zero-Neumann boundary
conditions are used for the pressure term on all boundaries, except for the outflow
boundary, where the pressure is set to zero. The boundary conditions for the adjoint
variables ensure that the variances of the Lagrangian functional are zero (Blackburn &
Sherwin 2004; Mao et al. 2013).

The convergence tests for grid resolution are conducted by varying the polynomial order
N in each element in the x–y plane. The resolution in the spanwise direction is only
relevant to three-dimensional (3-D) studies and is presented in § 5. Figure 2 shows the
convergence of Kmax at β = 1.4 and Re = 800, the largest Reynolds number considered in
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FIGURE 2. Convergence of Kmax with respect to the polynomial order N at
(Re, β) = (800, 1.4), and various ω.

this work. At N = 7, the optimal gain Kmax converges to three significant digits and this
polynomial order will be used in all the following linear and nonlinear calculations.

4. Linear perturbation analyses

Adopting the algorithms presented in § 2, we conduct the linear perturbation analyses
to investigate the development of the optimal inflow perturbations over the vibrating plate.
First, the base flow around the vibrating flat plate is presented.

4.1. The base flow
The base flow obtained by integrating (2.3) over enough cycles of the plate vibration until
reaching periodic states at Re = 800, A = 0.01 and ωw = 2π/180 is shown in figure 3.
Here the phase of vibration φ only shifts the initial phase of the base flow. Without loss
of generality, φ = 0 is adopted. Later in § 4.3, effects of φ are discussed. The vibration
leads to a sinusoidal variation of the angle of attack, which can be visualized from the
instantaneous flow fields at different phases as shown in figure 3(a,b). In figure 3(c), the
mean velocity averaged over a period for the vibrating plate almost overlaps with the steady
velocity profile for a fixed plate and the Blasius solution, indicating that the plate vibration
does not change the mean boundary-layer profile over the parameters studied. It is also
observed that the instantaneous velocity profile remains Blasius-like and shifts around the
steady solution. The evolution of the boundary-layer thickness δ, which reaches δ = 2.27R
at x = 200, also shows that the small vertical vibration in this study has little effect on the
mean boundary-layer flow (see figure 3e). As the pressure on the windward side is larger
than that on the leeward side, pressure on the upper surface increases or decreases from the
mean value when the plate is moving upward or downward (see figure 3d) and the largest
variance can be found around the leading edge. We show the pressure distribution along
the upper surface, while a similar pressure field is developed on the lower surface and
is not presented here. The flow is therefore subject to alternating favourable and adverse
pressure gradients around the leading edge in one vibration cycle. Further downstream
of the leading edge, the mean flow undergoes small favourable pressure gradients while
instantaneously, negative pressure gradient exists over almost half of the cycle. Though the
vibration amplitude of the plate is small, it produces remarkable change of flow with time.
Base flows at other Re, A and ωw considered in this work are also featured by sinusoidally
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FIGURE 3. Base flow at (Re, A, ωw) = (800, 0.01, 2π/180). (a), (b) Contours of streamwise
velocity and streamlines around the leading edge at t = π/(4ωw) and t = 3π/(4ωw),
respectively. (c) Comparisons of velocity profiles at x = 100, η is defined as y/

√
Re · x .

(d) Pressure coefficient Cp = p − p∞, where p∞ is the non-dimensionalized pressure in the
far field, along the upper surface of the plate. (e) Development of the boundary-layer thickness
along the flat plate.

varying angles of attack and time-dependent pressure gradients, and are not shown here
for brevity.

4.2. Amplification of inflow perturbations
The optimal inflow perturbations and the gain Kmax are then calculated following the
algorithms outlined in § 2. It is noted that if the plate does not vibrate, the linear
dynamics can be further simplified by studying only the half of the domain with
symmetric/asymmetric boundary conditions at y = 0 (Wang et al. 2019). However, in the
present investigation, the full domain is considered to accommodate the vibration effect,
even if the resolution is concentrated on the upper half.
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FIGURE 4. Contours of Kmax for optimal inflow perturbations at (ωw, A) = (2π/180, 0.01) with
(a) Re = 300 and (b) Re = 500. The red dashed line marks the vibration frequency of the flat
plate and the red solid line illustrates the optimal spanwise wavenumber at different ω. The
black circle represents the global maximum point of Kmax . Here β ′ is a normalized spanwise
wavenumber.

Effects of the Reynolds number on the optimal gain Kmax are shown in figure 4,
where the contours of Kmax over a wide range of spanwise wavenumbers and perturbation
frequencies are compared.Over the Reynolds numbers considered, the global maximum of
Kmax across the range of β and ω studied corresponds to the steady inflow perturbation,
similar to the result for a fixed plate (Monokrousos et al. 2010). As the Reynolds number
increases from Re = 300 to Re = 500 and Re = 800 (figures 4a,b and 6c), the boundary
layer’s response to disturbances becomes more energetic, and the optimal spanwise
wavenumber at which the gain of the steady perturbation reaches maximum increases from
0.87 to 1.14 and 1.4, respectively. By taking into account the normalized wavenumber,

β ′ = β/
√

Re, (4.1)

the three Reynolds numbers give rise to optimal wavenumbers β ′
max = {4.95, 5.10, 5.02} ×

10−2, indicating that the optimal spanwise wavenumber at ω = 0 is insensitive to Re after
the appropriate normalization (Luchini 2000; Andersson et al. 2001).

Actually, the optimal spanwise wavenumbers at other perturbation frequencies are also
insensitive to the Reynolds number. The red solid curves in figure 4, which connect the
optimal spanwise wavenumber at different perturbation frequencies, are extracted and
plotted compactly in figure 5. With the same vibration frequency and amplitude, the curves
at different Reynolds numbers show a similar shape. The optimal spanwise wavenumber
increases slowly when ω is small and then rises almost linearly for larger ω. Over the range
of perturbation frequencies considered (ω < 0.15), the curves can be fitted as the Logistic
functions, which can be approximately unified as ω = C2 + (C1 − C2)/(1 + (β ′

max/C3)
σ ),

where C1 = 0.0508, C2 = 0.0975, C3 = 0.122 and σ = 2.39 for the present case. Later,
we show that this Re insensitive parameter β ′

max strongly depends on the vibration of the
plate. From figures 4 and 6(c), we also find that the optimal gain Kmax decreases with
ω, manifesting the shear sheltering mechanism of the boundary layer to high-frequency
disturbances. As shown later, this nearly monotonic decrease does not hold when the plate
vibrates at high frequencies. After clarifying the Reynolds number effects, we focus on
Re = 800 in the following analyses.
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FIGURE 5. Variation of the optimal spanwise wavenumber at different Reynolds numbers.
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FIGURE 6. Effects of vibration amplitude on the amplification of the optimal inflow
perturbations. (a) Contours of Kmax at (Re, ωw, A) = (800, 2π/180, 0). (b) Contours
of Kmax at (Re, ωw, A) = (800, 2π/180, 0.005). (c) Contours of Kmax at (Re, ωw, A) =
(800, 2π/180, 0.01). (d) Variation of the global maximum of Kmax with vibration amplitude
A. In contours (a) to (c), the red dashed line marks the vibration frequency of the flat plate and
the red solid line connects the optimal spanwise wavenumbers at different ω. The black circle
represents the point of the global maximum of Kmax .
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FIGURE 7. Effects of vibration amplitude on the cut-off frequency and optimal spanwise
wavenumber. (a) Variation of Kmax with ω at (Re, β) = (800, 1.4). The vertical lines denote
the position of ω = ωw = 2π/180. (b) Variation of β ′

max with ω.

The influences of vibration amplitudes on the amplification of optimal inflow
perturbations are presented in figure 6. Under the range of parameters considered, a
stronger vibration results in weaker amplification of the inflow perturbations. The global
maximum of Kmax , which is obtained at spanwise wavenumber β = 1.4 and frequency
ω = 0, decreases from 6850 to 4936 and 3580 when the vibration amplitude increases
from 0 (non-vibrating) to 0.005 and 0.01, as shown in figure 6(a–c). The variation of the
global maximum of Kmax with the vibration amplitude at given frequencies is shown in
figure 6(d). It confirms that the global maximum amplification of the inflow perturbation
decreases monotonically with the vibration amplitude A. Compared with the fixed plate
case, the reduction of the global maximum gain is up to 60 % at A = 0.0145, suggesting
that the lift-up mechanism would be suppressed owing to the plate vibration.

The amplification of optimal inflow perturbations at β = 1.4 for different vibration
amplitudes is extracted and presented in figure 7(a). It shows that the amplification of the
optimal perturbation reduces faster as ω increases for higher vibration amplitudes. Above
a critical frequency, the inflow perturbation does not enter the boundary layer and develops
in the free stream. If ignoring the viscous diffusion, the corresponding perturbation growth
is Kmax = To/2 = 90. This critical frequency is defined as the cut-off frequency, which
decreases with the vibration amplitude A as can be seen in figure 7(a). This observation
suggests that the vibration strengthens the sheltering effect of the boundary layer to
high-frequency free-stream disturbance (it will be shown later that this is true only at low
vibration frequencies). In addition to the cut-off frequency, the vibration also clearly alters
the optimal spanwise wavenumber (see figure 7b), which has been shown to be insensitive
to Re in figure 5.

The contour maps of Kmax for different vibration frequencies are presented in
figures 6(c), 8(a) and 8(b). The global maximum of Kmax decreases as the vibration
frequency ωw increases. Compared with low-frequency vibration cases (figure 6), the
high-frequency vibration of the plate apparently induces a second local peak on the
contour plot of Kmax . The first peak remains at ω = 0 with a reduced value as compared
with the stationary plate result, whereas the second appears at ω = ωw. This new peak
can be considered as a manifestation of the resonance effect of the flow perturbations
and the vibrating plate and is the focus of the rest of this work. In fact, there is
always a resonance effect as long as the plate vibrates. For the lower-frequency case
(ωw = 2π/180 in figure 6b,c), the resonance peak is submerged in the main contour
so it is not clearly visible. Figure 7(a) shows that the curves of Kmax present a small
local peak at ω = ωw = 2π/180, manifesting a weak resonance effect for a low-frequency
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FIGURE 8. Effect of vibration frequency on the amplification of optimal inflow perturbations.
(a) Contours of Kmax at (Re, ωw, A) = (800, 2π/60, 0.01). (b) Contours of Kmax at
(Re, ωw, A) = (800, 2π/45, 0.01). The red dashed line marks the vibration frequency of the flat
plate and the red solid line connects the optimal spanwise wavenumbers at different ω. The black
circle represents the point of local maximum of Kmax . The black square point marks the resonant
point.

vibrating plate. The profile of the normalized optimal spanwise wavenumber (marked by
the red line in figure 8) shows that the optimal β increases and then decreases with ω
when there is a resonance induced local maximum of perturbation amplification. At the
resonant frequency, the optimal spanwise wavenumber equals that at zero perturbation
frequency (β = 1.4), indicating a similar mechanism of perturbation amplifications (and
streak generations) at the resonance frequency and zero perturbation frequency. This will
be further illustrated in § 4.3. To summarize, a higher magnitude of the plate vibration
results in a lower perturbation amplification and lower cut-off frequency, whereas a higher
vibrating frequency results in clear resonance with the perturbation development.

4.3. Resonance between the vibrating plate and perturbations
The details of the influences of resonance on the perturbation amplifications are plotted in
figure 9. The amplification of the optimal inflow perturbations shows a downward trend
owing to the shielding mechanism of the boundary layer, as can be seen in figure 9. Further,
Kmax fluctuates owing to the plate vibration and several peak values (marked by solid
dots) appear at the harmonics of ωw, manifesting the resonance phenomena. Therefore,
the curves can be interpreted as the superposed effects of the boundary-layer sheltering to
high-frequency perturbations and resonance between perturbations and the plate. One of
the consequences is that the cut-off frequency becomes higher when resonance happens,
indicating that higher-frequency free-stream perturbations are admitted by the boundary
layer owing to the plate vibration. Within the scope of parameters considered, the
resonance-induced gain is still smaller than that at zero frequency. For example, the gain at
ω = ωw = 2π/60 is about 36 % of the gain at ω = 0. We focus on the resonance-induced
gain because it allows higher-frequency perturbations to enter the boundary layer, which
might alter the bypass transition process on the vertically vibrating plate. For instance, the
resonance-induced gain is 1.46 times of the gain of stationary case at the same perturbation
frequency ω = 2π/60.
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FIGURE 9. Variation of Kmax with ω at (Re, β) = (800, 1.4) for different ωw. The dots denote
the resonant points. The vertical lines denote the position of ω = ωw.

To further examine the resonance effect, the velocity profiles of the optimal inflow
perturbation at various ωw are shown in figure 10. The inflow perturbations are scaled
so that they have the same energy or norm, which is defined as

‖u′
in‖ =

√∫
xin

u′
in · u′

in dS. (4.2)

As the velocity is optimized to induce maximum perturbation gain on the upper half of the
domain, the perturbation velocity reduces to trivial levels for y > 5 or y < −1. The inflow
velocity perturbation is decomposed into streamwise (u′), wall-normal (v′) and spanwise
(w′) components. The velocity profiles show that the optimal perturbations are mainly
composed of wall-normal and spanwise components, although there is a weak streamwise
one (see figure 10a,b). The streamwise vorticity perturbation formed by the wall-normal
and spanwise components tilts the base shear profile and leads to the generation of
streamwise perturbation via the lift-up mechanism. Therefore, if there is no leading edge,
the optimal inflow velocity should be concentrated on the wall-normal and spanwise
components only. However, the leading edge tilts the inflow perturbations and therefore
a streamwise velocity perturbation component appears in the optimal profile and will
contribute to the streamwise vorticity downstream of the leading edge (Wanderley & Corke
2001; Schrader et al. 2010). Figure 10(a) also shows that the optimal disturbance of the
stationary case is concentrated at 0 < y < 2 and associated with the boundary layer on
the upper surface. As a result of the vertical vibration of the wall, the optimal perturbation
of the vibrating case is less localized as compared with that of the stationary case (see
figure 10d). In the resonance regime, the velocity profile over the vibrating plate consists
of more layers in the vertical direction than that over the stationary plate, as shown in
figure 10(b,e). This multi-layer structure will be shown later to be critical to activate
the resonance. Above the cut-off frequency, the velocity profiles in figure 10(c, f ) share
similar shapes. The wall-normal component (v′) is small whereas u′ becomes the dominant
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FIGURE 10. Velocity profile of the optimal inflow perturbation at (Re, β) = (800, 1.4): (a), (b)
and (c) perturbation components for a non-vibrating plate at ω = 0, ω = 2π/60 and ω = 0.5,
respectively; (d)–( f ) same parameters as (a)–(c) but for the vibrating plate with ωw = 2π/60.

component, which can be attributed to the ineffective lift-up mechanism above the cut-off
frequency.

In figure 11, we further acquire the responses of the boundary-layer flow to the optimal
inflow perturbations by applying the optimal perturbations at the inflow and integrating
the linearized NS equations (2.4). Again, the inflow perturbations are normalized to
have a unit norm. As mentioned previously, the steady inflow perturbations penetrate
the boundary layer and activate the lift-up mechanism to generate elongated streamwise
velocity streaks in the boundary layer while the plate vibration reduces the magnitude of
the streaks as can be inferred from figure 6. This is confirmed by the streak profiles shown
in figure 11(a,b), where the plate is stationary and vibrating, respectively. At ω = 2π/60,
which is still below the cut-off frequency, short streaks with alternating signs in the
streamwise are induced by the optimal inflow perturbation over a stationary plate (see
figure 11c). When the plate vibrates and resonance occurs, the sign of the streaks becomes
invariant and a single streak is generated (see figure 11d). This effective generation of
strong streak reflects the large amplification of the optimal inflow perturbation (shown in
figure 10e) illustrated by the local peak of Kmax in figure 9. The mechanism to generate such
elongated streaks will be explored later. The high-frequency perturbations over the cut-off
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FIGURE 11. Side view of isosurfaces of streamwise perturbation u′ at (Re, t) = (800, 180):
(a,b) ω = 0; (c,d) ω = ωw and (e, f ) ω = 0.5. (a), (c) and (e) Non-vibrating plate and (b), (d)
and ( f ) vibrating plate at ωw = 2π/60. The dashed line marks the boundary-layer thickness δ,
which is the height from the wall where the streamwise velocity reaches 99 % of the free-stream
velocity.

frequency can hardly penetrate the boundary layer and mainly reside in the free stream
while the plate vibration induces the vertical motion of the perturbation (see figure 11e, f ).
This observation agrees with the shear sheltering effect on high-frequency perturbations
revealed by Zaki & Saha (2009). As the responses of the boundary layer to disturbances
with frequencies above the cut-off value are weak, such high-frequency optimal inflow
perturbations will not be considered further. Please note that we only show the evolution of
the optimal perturbations at three perturbation frequencies ω = 0, 2π/60, 0.5 in figure 11.
In fact, the inflow perturbation with frequency above ω = 2π/60 ≈ 0.105 is still allowed
inside the boundary layer because it is below the cut-off frequency ω = 0.37.

Comparing the present outcome with the case of transversely oscillating wall considered
by Hack & Zaki (2012), the transverse oscillation introduces the Stokes shear layer to
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the boundary-layer flow, which leads to a substantial reduction of free-stream disturbance
energy entering the boundary layer. In addition to the stronger shear sheltering effect, the
Stokes shear layer reorients the shear vector and imposes a new restriction on the set of
penetrating modes such that the orientation of modes subject to weak sheltering effect
deviates from the streamwise direction. For our case of vertically vibrating flat plate, the
vibration introduces the periodic variation of the angle of attack, which leads to the time
harmonic pressure gradient on the wall. As the vertical vibration in our work is small, this
pressure gradient is only significant around the leading edge and becomes negligible on the
flat plate far from the leading edge. The shear layer on the vertically vibration wall is thus
inappreciably changed by the time harmonic pressure gradient on the plate. However, the
shear sheltering of the boundary-layer flow is still influenced by the vertical wall motion
because it allows synchronized inflow perturbation entering the boundary layer.

To inspect the effect of plate vibration on the resonance of the fluid flow more closely,
the evolution history of the perturbation is shown in figure 12. Note that over the
optimization time To = 180, the inflow perturbation (and the plate vibration) presents
three cycles. At t = 3To/12, the streamwise velocity perturbation upstream of the leading
edge consists of a positive and a negative component, matching the profile of the inflow
perturbation in figure 10(e). Then the free-stream perturbation is stretched and tilted by the
curved mean-flow streamlines near the leading edge (see figure 3a,b). When the inflow
disturbance moves closer to the leading edge, the upward/downward movement of the
plate imposes a negative/positive angle of attack, which shifts the inflow perturbation
towards the lower/upper side of the plate. As a result, the inflow disturbance is staggered.
As the frequency and phase the plate vibration and flow oscillation match each other,
both the negative and positive components of the streamwise velocity perturbation enter
the upper side of the plate and the negative (positive) part is in (out of) the boundary
layer at t = 3To/12. Then at t = 5To/12, the positive perturbation on the lower array
is shifted to the lower side of the plate, while the negative perturbation on the upper
array enters into the upper side. In other words, the inflow disturbance is appropriately
staggered that only the same sign of perturbation can remain inside the boundary layer.
At t = 7To/12, the negative components of the streamwise velocity on the lower array
enters the upper side of the plate again, completing a vibration cycle started at t = 3To/12.
At t = 9To/12 and t = 11To/12, as the negative streamwise velocity is continuously
convected downstream, an elongated streak is formed on the upper side. The streamwise
vorticity shown in the right column of figure 12 presents similar staggered motion as the
streamwise velocity. As the sign of the streamwise vorticity inside the upper boundary
layer remains the same, it has the capacity to amplify the streaks to a magnitude much
larger than the non-resonance cases. At this point of view, the multi-arrays of inflow
disturbance is necessary to produce a sign-invariant perturbation inside the boundary layer
and thus induce an energetic streaky response, which is exactly the case of optimal inflow
perturbation shown in figure 10(e). The negative streamwise vorticity on the lower array,
which enters into the upper side of the plate due to the downward movement of the plate
(see at t = 3To/12, 7To/12, 11To/12), is named as ξ ′

x1. The negative streamwise vorticity
on the upper array, which enters into the upper side of the plate because of the upward
movement of the plate (see at t = 5To/12, 9To/12), is denoted as ξ ′

x2. In § 5, we show that
ξ ′

x1 and ξ ′
x2 have profound effects on the distortion of low-speed streaks.

The pattern of the staggering, illustrating a synchronization of the motion of the
plate and the perturbation, is shown in figure 13, where the black arrows represent the
angle of attack as the disturbances move around the leading edge. This effect increases
monotonically with the vibration amplitude A. For steady inflow perturbations, the
vibrating plate shifts the streamwise vorticity to lower/upper side of the plate when the
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FIGURE 12. Evolution of resonant inflow perturbations (a) u′ and (b) streamwise vorticity ξ ′
x at

ω = ωw = 2π/60. The dashed line marks the boundary-layer thickness on the upper side, δ. The
dashed box marks the incoming ξ ′

x2 and the dash-dotted box marks the incoming ξ ′
x1.
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FIGURE 13. Schematic plot of the staggering effect of vibrating plate at resonant frequency.
The black arrows represent the angle of attack as the disturbances move around the leading
edge.

plate is moving upwards/downwards. Therefore, the free-stream streamwise vorticity and
velocity entering the upper side of the boundary layer are broken into segments, preventing
the continuous amplification of the streaks, and subsequently the lift-up mechanism is
weakened by the plate vibration. As a result, the amplification of steady free-stream
perturbations in the boundary layer over a vibrating surface reduces at higher vibration
magnitude A as observed in figure 6(d). In fact, the synchronization of the motion of the
plate and the perturbation can also be activated when the vibration frequency is half of the
perturbation frequency. Therefore, there are peaks at 0.5 × ωw in figure 9, though the peak
values are small.

From the discussion given previously, clearly the resonance depends on the match of
frequencies and phases between the vibration and inflow disturbances. When the match
is broken, the synchronized staggering disappears and disturbances are disordered on the
upper part of the plate. Figure 14 shows the response of boundary-layer under different
initial phases of the vibrating plate. The optimal inflow perturbation shown in figure 10(e)
is applied on the inflow boundary when we integrate the linearized NS equations.
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FIGURE 14. Contour of streamwise vorticity ξ ′
x under different initial phases (a) φ = π/4, (b)

φ = π/2 and (c) φ = π. The optimal inflow perturbation at (Re, ω, ωw) = (800, 2π/60, 2π/60)
is imposed on the inflow. The dashed line marks the boundary-layer thickness, δ.

The perturbation vorticity is tilted more obviously by the leading edge when the initial
phase of vibration is φ = π/4 (see figure 14a), compared with the results shown in
figure 12(b) when the initial phase is zero. Although the perturbation is more inclined,
the streamwise vorticity in the upper boundary layer is still sign-invariant. In fact, the
resonance effect is robust and can be found over a wide range of phases (around φ =
±π/4) because the inflow disturbances can tilt and deform to climb over the leading
edge. When the phase difference is increased to φ = π/2, the perturbation is cut by the
vibrating leading edge and tilted severely (see 14b). The inflow disturbance is staggered
inappropriately at this case and thus both positive and negative streamwise vorticity enter
the boundary layer. The opposite phase φ = π gives rise to continuous positive streamwise
vorticity inside the boundary-layer because now it is the other array of inflow perturbation
that remains inside the boundary layer, which is confirmed by comparing the perturbation
around the leading edge (shown in figure 14c). It is also worth noting that at those
mismatched phases, the inflow perturbation is no longer the optimal solution, while the
optimal one ensures a phase match and the synchronized motion by slightly adjusting its
frequency around the vibration frequency.

5. Resonance-induced bypass transition

As discussed in the previous linear study, the optimal inflow perturbations in resonance
with the vibrating plate produce the elongated, high-amplitude streamwise streaks whose
further nonlinear development can be expected to lead to bypass transition as revealed by
numerous work in flow around stationary plates. In this section, the 3-D DNS is performed
to examine the breakdown of streaks and transition to turbulence activated by the resonant
inflow perturbation. The computational domain is extended to x = 300 to incorporate the
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inception of bypass transition and the spanwise width lz of the domain is set as 13.46
(about 5.93 times of the boundary-layer thickness δ at x = 200) to contain three pairs of
the optimal inflow waves. Then the computational domain is decomposed into 120 Fourier
modes in the spanwise direction. The norms of inflow perturbations (‖u′

in‖) are scaled to
0.1 and 0.12, which correspond to maximum inflow perturbation velocities 6.4 × 10−2 and
7.6 × 10−2, respectively. We have also confirmed that the streaky response of boundary
layer is similar to the result of linear calculation when the norm of inflow perturbation is
small (‖u′

in‖ = 0.001, not shown here).
Figure 15 shows the nonlinear response of the boundary-layer with ‖u′

in‖ = 0.12. The
streamwise vorticity strongly interacts with the streamwise streaks and the low-speed
streaks are apparently lifted away from the surface whereas the high-speed streaks are
shifted towards the surface owing to a nonlinear lift-up mechanism (Mao et al. 2017).
The low-speed streaks have reached the edge of the boundary layer and are thus exposed
to free-stream disturbances out of the boundary layer, as shown in figure 15(a). In
the present case, the inflow perturbation is fixed at frequency ω = 2π/60 and in the
absence of high-frequency free-stream disturbances, the streaks do not undergo secondary
instabilities such as meandering motions. However, the low-speed streaks on the vibrating
plate are distorted in the vertical direction, which was not observed on fixed flat plate flow
(Wang et al. 2019), whereas the high-speed streaks show a smooth profile. The distortion
of low-speed streaks is attributed to the vibration of the plate and the unsteady nature of the
perturbation. As has been shown in figure 12, the incoming unsteady streamwise vorticity
ξ ′

x is staggered by the vibrating plate to form the continuous ξ ′
x and this continuity reduces

in the vertical direction. In other words, the underlying sign-invariant ξ ′
x is composed of

continuous vorticity inside the boundary layer and become more unsteady or streamwise
dependent around the edge of the boundary layer. As the low-speed streaks are lifted
away from the wall by the nonlinear lift-up effect, they are exposed to the inhomogeneous
streamwise vorticity around the edge of the boundary layer. The inhomogeneous vorticity
at the top the boundary layer further stretches the low-speed streaks in the wall-normal
direction. As a result, the low-speed streaks are streamwisely distorted. On the other hand,
the high-speed streaks are shifted towards the wall by the nonlinear lift-up effect, so they
are less affected by the streamwisely inhomogeneous vorticity at the top of the boundary
layer and, thus, are not deformed.

The streamwise location of the distortion changes periodically with time owing to
the convection effect. This can be also observed in figure 15(b), where the profiles of
streaks over one vibrating period at x = 150 are illustrated. At t = 270, the nonlinear
lift-up mechanism already manifested itself that the low-speed streaks are lifted above
the high-speed streaks and show the mushroom shape. Then at t = 285, owing to the
inhomogeneous streamwise vorticity (locally strong at some positions) at the top of the
boundary layer, the low-speed streaks are distorted significantly whereas the high-speed
streaks deform slightly. At t = 300 and t = 315, the low-speed streaks are further stretched
in the wall-normal direction by the inhomogeneous streamwise vorticity, resulting in a
slender cross-section of the low-speed streaks. At t = 330, the locally strong vorticity is
convected downstream and the streaks have redeveloped to the mushroom shape again.

The streamwise development of the magnitude of the streaks is further studied
to quantify this inhomogeneity induced distortion. According to the previous studies
(Andersson et al. 2001; Brandt et al. 2004), the streak amplitude can be defined as

Am(x, t) = 1
2

[
max

y,z
(u(x, y, z, t) − U(x, y, t)) − min

y,z
(u(x, y, z, t) − U(x, y, t))

]
, (5.1)
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FIGURE 15. Nonlinear evolution of the inflow perturbations with time t. (a) 3-D view of
isosurfaces of streamwise perturbation velocity u′ = 0.1 and u′ = −0.1 at (Re, ω, ωw, ‖u′

in‖) =
(800, 2π/60, 2π/60, 0.12). The isosurfaces are colored by blue and red for u′ = −0.1 and
u′ = 0.1, respectively. (b) Contours for u′ extracted at x = 150. The dashed line in (b) marks
the boundary-layer thickness, δ.

where u(x, y, z, t) is the total streamwise velocity in the presence of streaks and U(x, y, t)
is the streamwise velocity of the base flow. It is also a function of time t because of
the vibration. Variations of streak amplitude along x direction and the contours of ξ ′

x
at t = 480 are shown in figure 16. The continuous tilting of the base flow by ξ ′

x gives
rise to a trend of amplification of streaks in streamwise direction with strong fluctuations.
When the inflow perturbations is strong with ‖u′

in‖ = 0.12 and the plate is vibrating, the
global maximum of streaks is located at x = 125 and its amplitude is 42.5 %. Further
downstream, the streaks decay under the viscous effect. The fluctuation of streaks on
the vibrating plate can, thus, be classified into three zones: growing (x < 64), mature
(64 < x < 127) and decay (x > 127). In the growing zone, Am grows quickly and the
streamwise wavelength of streak fluctuation is approximately half of the wavelength of
the inflow perturbation (0.5 × 2πU∞/ω = 30). The explanation of this wavelength is
given later. In the mature zone, the magnitude of the streaks reaches maximum with the
oscillation frequency reducing. In the decay zone, the viscosity dissipation results in a
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FIGURE 16. (a) Variation of streak amplitude Am with x and (b) contours of ξ ′
x at t = 480. The

dash-dotted box marks ξ ′
x1 and the dashed box marks ξ ′

x2. The optimal inflow perturbations are
obtained at (Re, ω, ωw) = (800, 2π/60, 2π/60). The contours from top to down correspond to
cases at ‖u′

in‖ = 0.12, on vibrating plate, ‖u′
in‖ = 0.1, on vibrating plate, and ‖u′

in‖ = 0.12, on
non-vibrating plate.

downward trend of the streak amplitude and the fluctuation of streak amplitude is also
smaller. Similar evolution of Am is found when the norm of the inflow perturbation is
scaled to 0.1. The difference is that the streaks decay slower and the global maximum of
Am is obtained at larger x around 170. To summarize, even if the streaks show an invariant
sign owing to the synchronized motion revealed in § 4.3, their magnitude is periodically
modulated by the vibration of the plate. For the non-vibrating case, the growing zone is
smaller (x < 30) and the decay zone is longer (x > 90).

The inhomogeneous distribution of ξ ′
x is shown in figure 16(b) to explain the fluctuation

of Am. In § 4.3, we have classified the streamwise vorticity on the upper side of the plate
into two components, ξ ′

x1 and ξ ′
x2, representing the streamwise vorticity entering the upper

boundary layer when the plate is moving downward and upward, respectively. For clarity,
in the first two rows of figure 16(b) (the nonlinear counterpart of figure 12b), ξ ′

x1 and ξ ′
x2

are marked by dash-dotted box and dashed box, respectively. The fluctuation of Am shown
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in figure 16(a) is in accordance with the inhomogeneity of ξ ′
x shown in figure 16(b), which

indicates the influence of inhomogeneous ξ ′
x on the nonlinear lift-up mechanism. Take

the vibrating case with ‖u′
in‖ = 0.12 as an example, the streak amplitude Am is plotted

in figure 16(a) as the red solid line and the streamwise vorticity is shown in the top
row of figure 16(b). These two figures show that the local peak of streak amplitude at
x ≈ 125 is in accordance with the locally strong ξ ′

x at x ≈ 125. Similar features can also
be seen at x ≈ 185 and x ≈ 245. Later, we discuss the fluctuation of the streak amplitude
in different zones in details. In the growing zone, both ξ ′

x1 and ξ ′
x2 are strong and capable

of amplifying the streak. Therefore, for the vibrating plate, the fluctuation of Am in this
zone is due to the alternation of ξ ′

x1 and ξ ′
x2. Thus, the streamwise wavelength of Am is

half of the streamwise wavelength of the inflow perturbation. For the non-vibrating plate,
the fluctuation is attributed to the alternation of positive and negative streamwise vorticity
(unsteadiness of the inflow perturbation). In the mature zone, ξ ′

x2 on the vibrating plate is
decaying and, thus, the alternation of ξ ′

x1 and ξ ′
x2 does not lead to any sharp increase of

Am for the vibrating case. For the stationary case, the pattern of the streamwise vorticity
is unchanged but the streak amplitude has reached the global peak value and starts to
decrease. In the decay zone, the weaker streamwise vorticity under the viscous effect
results in smaller fluctuation of Am. For the vibrating plate, the wavelength of fluctuation
in decay zone is close to the wavelength of inflow perturbations (2πU∞/ω = 60) because
only ξ ′

x1 can lead to a sudden increase of Am in this zone, whereas ξ ′
x2 is weak and confined

inside the boundary layer. For the non-vibrating plate, the wavelength of fluctuation in the
decay zone remains unchanged because the pattern of ξ ′

x is the same as that in the growing
zone and mature zone (see figure 16(b), the last row) and the streak amplitude reduces to
less than 0.05 at x = 300.

The periodical distortion of streaks might lead to intermittent secondary instabilities.
As discussed in the previous section, the lifted low-speed streaks are prone to secondary
instabilities seeded by high-frequency disturbances in the free stream. In order to
activate the secondary instability of streaks and transition to turbulence, high-frequency
disturbances are added to the optimal inflow perturbations to perturb the flow. The
high-frequency disturbances consist of Fourier waves with the form

u′
h =

J∑
j=2

M∑
m=0

N∑
n=0

ηjmn sin(γn · y) cos(β · m · z)eijωt, (5.2)

where m · β is the spanwise wavenumber of the mth spanwise wave and γn is the arbitrary
wall-normal wavenumber of the nth wall-normal wave. The high-frequency disturbances
consist of 48 spanwise waves and 15 wall-normal waves (M = 48, N = 15). Here ηjmn is

the random amplitude of the high-frequency noise satisfying
√∑

η2
jmn = 0.015, and jω is

the disturbance frequency. The frequency of the inflow perturbation that gives rise to the
velocity streaks is ω = 2π/60. Here the high-frequency disturbances are made up of 72
modes (J = 72). The nonlinear response of the boundary layer is traced by performing
3-D DNS and the results are shown in figure 17. For comparison, the response of the
boundary-layer on stationary plate (figure 17a) as well as response to smaller-amplitude
perturbations (figure 17b) are also plotted. The corresponding velocity perturbations are
shown in figure 17(d–f ).

The streaks on the stationary plate do not breakdown, and they are finally attenuated by
viscous effects in the absence of secondary instabilities (see figure 17d). In the previous
studies by Andersson et al. (2001) and Zaki & Durbin (2006), the instability of streaks
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FIGURE 17. Top view of isosurfaces of instantaneous flow fields after adding higher-frequency
inflow disturbance :(a, d) (A, ω, ωw, ‖u′

in‖) = (0, 2π/60, 2π/60, 0.12), (b, e) (A, ω, ωw,

(‖u′
in‖) = (0.01, 2π/60, 2π/60, 0.1) and (c, f ) (A, ω, ωw, ‖u′

in‖) =(0.01, 2π/60, 2π/60, 0.12).
(a)–(c) Isosurfaces of λ2 = {−0.01, 0.005, 0.002} colored by the full velocity, using the
isosurfaces of streamwise velocity u = 0.8 as the background. (d)–( f ) Isosurfaces of streamwise
perturbation u′ = ±0.12.
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is related to the inflectional point of the velocity profile. For the sinuous mode, the
instability of streaky boundary layer is related to the spanwise shear induced by the streaks,
whereas for the varicose mode, the instability is in connection with the wall-normal shear
(Saric 1994; Asai et al. 2002). The low- and high-speed streaks alternately appear in the
streamwise direction and overlap with each other inside the boundary layer (the heads of
the low-speed streaks lay above the tails of the high-speed streaks and vice versa) when
the plate is stationary, causing strong wall-normal shear. Therefore, the streaks on the
stationary plate are prone to the varicose-type instability. Vaughan & Zaki (2011) argued
that the inner mode (varicose type) was stable in low-amplitude, higher-frequency streaks.
In our study, the normalized frequency (F = 106ω/

√
U∞x/ν) of streaks at x = 300 is

F = 214, which is outside of the most energetic frequency range (0 < F < 100) (Jacobs &
Durbin 2001; Vaughan & Zaki 2011) and the amplitude of the streak is small (Am = 0.05).
Therefore, the inner mode instability of the streaks on the stationary plate is still too weak
to arouse the streaks to breakdown and form the turbulent spots. In another study with the
same geometry and Reynolds number as those in the present work, bypass transition was
achieved by combining the inflow perturbations and a body forcing (Wang et al. 2019).

The secondary instabilities of streaks are successfully stimulated by the high-frequency
disturbances for the vibrating plate flow (see figure 17b,e). The meandering motions of
streaks are spotted at x ≈ 95, 150, 200, 250 and 300 and the meandering becomes more
intense as x increases, indicating that the secondary instability of streaks is intermittent
and growing in every period. The interruption of the secondary instabilities of streaks is
attributed to the inhomogeneity of streamwise vorticity around the edge of the boundary
layer, which breaks the mushroom shape of the low-speed streaks periodically. From
the λ2 (Jeong & Hussain 1995) plot at x ≈ 250 and 300, the meandering motions of
streaks are asymmetric, suggesting that the secondary instability is of the sinuous type
(see figure 17c). The meandering does not appear at the position where a local peak of
streak amplitude appears. Instead, it appears at the positions where the cross-section of the
streak is of mushroom shape. The streak amplitudes at the positions where the meandering
is observed (x = 95, 150, 200, 250, 300) are 0.31, 0.34, 0,35, 0.35, 0.29 at perturbation
level ‖u′

in‖ = 0.1. The streak amplitude around 300 is smaller, but the meandering motion
of the streaks becomes stronger (see figure 17e). In fact, it has been found that the streaky
boundary layer could be more unstable when the cross-section of low-speed streaks are
altered into trapezoidal shape (wide at the top and narrow at the bottom), even though its
amplitude is decreased slightly (Wang et al. 2019). The result presented previously agrees
with this observation.

The streaks finally break down and the transition is triggered as the perturbation level
is increased to ‖u′

in‖ = 0.12. The meandering motions of the streaks occur at x ≈ 95, 150
and 200 and the corresponding streak amplitudes are 0.36, 0.38 and 0.37. The secondary
instability after x = 200 is strong enough to sustain itself even if the cross-section of
the streaks is slightly stretched (see the meandering motions of the streaks at x = 210 and
220). While for the smaller perturbation level, the development of instability is interrupted
when the cross-section of the mushroom shape of the streak is broken. For the streaky
boundary layer over the stationary plate perturbed by steady perturbation, the meandering
occurs at x = 101 where Am is 0.35 (Wang et al. 2019). In comparison with their result,
although the onset of secondary instability is observed at a similar streamwise location
and streak amplitude (the meandering motions of the streaks are spotted at x = 95 where
Am = 0.36), the transition process over the vibrating plate is prolonged. The breakdown
of streaks and the onset of transition are quick after the burst of secondary instability for
stationary plate flow, while for the vibrating plate, the streaks undergo several rounds of
instabilities before the onset of transition.
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FIGURE 18. Contour for u′ at various streamwise locations after adding higher-frequency
noise, (a) x = 95, (b) x = 150, (c) x = 200 and (d) x = 230. The result is obtained at
(t, ω, ωw, ‖u′

in‖) = (480, 2π/60, 2π/60, 0.12).

The cross-sections of the streaky boundary layer at x = 95, 150, 200 and 230 are shown
in figure 18 to illustrate the details of the secondary instabilities. In general, it is clear that
the cross-section of the streak is of mushroom shape when the secondary instabilities are
stimulated. At t = 95, the low-speed streaks are lifted above the high-speed streaks and
the periodicity in the spanwise direction is broken because of the secondary instabilities.
The secondary instability at this position is weak and interrupted by the inhomogeneous
nonlinear lift-up, so the spanwise periodicity of the low-speed streaks is recovered
downstream. At x = 150, as the low-speed streaks are lifted higher owing to the lift-up,
the influence of the inhomogeneous nonlinear lift-up becomes stronger and, thus, the
low-speed streaks are further distorted. The distortion of the streaks is mainly in spanwise
direction, manifesting the spanwise shear correlation of the sinuous-type instability. The
secondary instability of streaks continues to develop at x = 200. The non-periodicity and
the meandering motions of the streaks is so strong that the inhomogeneous nonlinear
lift-up downstream cannot interrupt the spanwise distortion of the streaks. Further
downstream at x = 230, the streaks break down as has been observed in figure 17.

The skin friction coefficients (Cf ) for cases shown in figure 17 are plotted in figure 19.
The black solid curve represent mean Cf for the periodic base flow, which is close to the
theoretical laminar skin friction coefficient. Over half of the gap between the base flow Cf
and the theoretical laminar Cf at larger streamwise location can be directly attributed to
the pressure gradient downstream of the leading edge, because the present streamwise
force should be τw − ∂p/∂x , where τw is the wall shear. For the non-vibrating plate
(A = 0), the skin friction coefficient is increased slightly compared with the base case
at x ≈ 50 because of the presence of streamwise velocity streaks. Further downstream,
the streaks decay and, thus, Cf remains at the laminar value for the rest of the plate.
For the vibrating plate, the elongated streaks perturbed by weaker inflow disturbance
(‖u′

in‖ = 0.1) also cause an increase of the skin friction coefficient. However, the streak
amplitude is insufficient to trigger the inception of transition and, thus, the value of Cf
falls down when the streaks are attenuated by viscosity. Once the base flow is perturbed by
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FIGURE 19. Skin friction coefficients (Cf ) for various cases. Higher-frequency disturbances to
the optimal inflow perturbation is added.

the strong resonant inflow perturbation (‖u′
in‖ = 0.12), the skin friction coefficient shoots

up at x ≈ 230, representing the onset of transition, before converging to the turbulent
Cf curve. Compared with the stationary plate results (Nolan & Zaki 2013), the skin
friction coefficient over the vibrating plate takes long distance to shoot up, indicating
that the transition stage covers a larger area. Therefore, the vibration of the plate staggers
the resonant inflow perturbation to produce the elongated streamwise streaks inside the
boundary layer, which creates the precondition for the bypass transition. However, the
inhomogeneous nonlinear lift-up caused by the vibration acts as a hindrance in the
secondary instability excitation process.

6. Conclusions

The evolution of free-stream disturbance in flow over a vertically vibrating flat plate
has been studied. The optimal amplification of the flow to inflow perturbations has been
computed to investigate the effects of the plate vibration on the development of free-stream
disturbance, secondary instability of streaks and subsequently the bypass transition to
turbulence. Driven by the motion of the plate, the base flow is periodic in time and
homogeneous in the spanwise direction.

In comparison with the non-vibrating case, the plate vibration reduces the global
maximum gain of the inflow perturbation obtained at inflow frequency ω = 0, suggesting
that the linear lift-up process is suppressed by the vibration. For parameters considered
here, the amplification of optimal inflow perturbations decreases monotonically as the
vibration amplitude increases. As the vibration frequency is increased to ωw = 2π/60 and
then ωw = 2π/45, the vibration induces an obvious second local peak on the contour plot
of the gain Kmax on the plane of spanwise wavenumber β and perturbation frequency
ω, and this peak appears at ω = ωw, suggesting resonance between the perturbation
and the plate vibration. This resonance provides an opportunity for the high-frequency
perturbations to enter the boundary layer. As a result, the cut-off frequency, above which
the free-stream perturbation is shielded by the boundary layer, becomes higher.
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The response of the boundary layer to the optimal perturbation shows that at the
resonance condition with ω = ωw = 2π/60, the perturbation structures over the vibrating
plate are elongated streamwise streaks similar to the streaks induced by steady inflow
perturbations over a stationary plate, whereas the unsteady inflow perturbation over the
stationary plate are streamwise periodic streaks. By examining the perturbation velocity
profile and the evolution history of the resonant inflow perturbations, it is found that the
resonance phenomenon can be attributed to the continuous streamwise vorticity generated
by the staggering effect of the vibrating plate. The optimal perturbation velocity profile
at the resonant frequency consists of more layers in the vertical direction than that
over the stationary plate. In other words, the streamwise velocity (vorticity) perturbation
upstream of the leading edge consists of a positive and a negative component in the
vertical direction. The upward/downward movement of the plate in one vibration cycle
imposes a negative/positive angle of attack, which shifts the inflow perturbations toward
the lower/upper side of the plate. For the resonant inflow perturbations, the downward
movement of the plate shifts both the negative and positive components of inflow
perturbations to the upper side of the plate and the negative (positive) part is in (out of)
the upper boundary layer. While the upward movement of the plate shifts the negative
component on the upper array of inflow disturbance to the upper side of the plate and
displaces the positive component on the lower array to the lower side. This synchronization
of the motion of the plate and the perturbation ensures that the streamwise vorticity
in the upper boundary layer is sign invariant in the streamwise direction and, thus,
capable of amplifying the streaks continuously. For steady inflow perturbations, the plate
vibration tends to break the streamwise velocity into segments and thus weakens the lift-up
mechanism. A similar staggering mechanism of a moving streamlined body can also be
found in the study of flapping wings in the tandem configuration (Lua et al. 2016). The
flapping of the wings also introduces a periodically varying angle of attack, which shifts
the wake of the front wing to upside or downside of the rear wing.

The vertical vibration of the plate also affects the nonlinear lift-up and the secondary
instability of the streaks. In the absence of high-frequency free-stream disturbances, the
streaks do not present secondary instability such as meandering motions, but the low-speed
streaks on the vibrating plate are apparently distorted in the vertical direction, which was
not observed on stationary plate flow and can be attributed to the vibration of the plate.
The sign-invariant streamwise vorticity in the upper boundary layer is composed of ξ ′

x1 and
ξ ′

x2, representing streamwise vorticity entering the upper boundary layer when the plate is
moving downward and upward, respectively. Here ξ ′

x1 and ξ ′
x2 are continuous inside the

boundary layer but become streamwisely periodic near the edge of the boundary layer,
leading to the inhomogeneity of the strength of nonlinear lift-up around the edge of the
boundary layer. As a consequence, the low-speed streaks are stretched in the wall-normal
direction, and their distributions in the y–z plane become slender, deviating from the
mushroom shape which is prone to lose stability. This distortion is periodic in time owing
to the convection of the inhomogeneous nonlinear lift-up. After the inhomogeneity is
convected downstream, the low-speed streaks redevelop into mushroom shape again. In
other words, although the resonant inflow perturbation induces sign-invariant streaks over
the vibrating plate owing to the synchronized motion of the plate and the perturbation,
the magnitude and shape of the streaks are periodically modulated by the vibration of the
plate.

The secondary instabilities of the streaks are intermittent because the periodic distortion
of the streaks and the instabilities are of sinuous type as the meandering motions of
the streaks are asymmetric. These instabilities are stimulated by adding high-frequency
free-stream disturbances to the optimal inflow perturbation. The meandering motions
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of streaks are spotted at x = 95, 150 and 200 with the magnitude gradually increasing,
confirming that the secondary instabilities of streaks are intermittent and grow in every
period. The meandering does not occur at the position where a local peak of the streak
magnitude appears. Instead, it occurs at the position where the cross-section of the streak
is of mushroom shape. It indicates that the intermittence of the secondary instability can
be attributed to the inhomogeneity of the streamwise vorticity around the edge of boundary
layer, which breaks the mushroom shape of the streaks and thus interrupts the secondary
instability. As the perturbation level is increased to ‖u′

in‖ = 0.12, the instability of streaks
after x = 200 is strong enough to sustain itself even if the shape of streaks is slightly
stretched, and the onset of transition finally occurs. Compared with the streak instability
and breakdown over a stationary plate, the burst of secondary instabilities over a vibrating
plate is observed at a similar streamwise location and streak amplitude, but the streaks
undergo several rounds of instability before the onset of transition. As a consequence,
the nonlinear deformation of streaks or the transition stage occupies a larger streamwise
distance as indicated by the Cf curve, illustrating the importance of considering the
vibration effect when modelling or predicting the bypass transition in boundary-layer flow
over a vibrating body.
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