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Competition of multiple Gortler modes in hypersonic boandlayer flows are investigated with the local and marchirghods.
The wall-layer mode (mode W) and the trapped-layer mode é1igdboth occur in the compressible boundary layer wheresther
exists a temperature adjustment layer near the upper etigen®de T has the largest growth rate at a lower Gortler numbie
the mode W dominates at larger Gortler numbers. These twdemare both responsible for the flow transition in the hygpe@cs
flows especially when Gortler number is in the high valueggeaim which the crossover of these two modes takes place. [8gich
Gortler numbers are virtually far beyond the neutral regiffihe nonparallel base flows, therefore, cease to infludrcstability
behavior of the Gortler modes. Théects of the Mach number on the multiple Gortler modes amietiuwithin a chosen Mach
number of 0.95, 2, 4 and 6. When the flow Mach number fEgantly large, e.g.Ma >4, the growth rate crossover of the mode T
and mode W occurs both in the conventio@aB map as well as on the route downstream for a fixed wavelengthrbance. Four
particular regions (Region T, T-W, W-T and W) around the soy®r point are highlighted with the marching analysis dwedésult
matches that of the local analysis. The initial disturbasica normal mode maintains the shape in its correspondingraing
region while a shape-transformation occurs outside tigione
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1 Introduction imbalance. For earlier comprehensive reviews, the reader
may refer to Herbert [2], Hall [3], Floryan [4] and Saric [5].

Since Gortler's pioneering investigation [1] on the bound

ary layer instabilities subjected to the negative cunefor 11 The neutral curve: local and marching analysis

1940 highlighting the existence of the streamwise-orignte ) - ]
counter-rotating vortices, extensive studies have begfeda In the category of linear stability, fierent neutral curves had

out on this subject especially in the incompressible flows.P&en obtained in the past with the parallel flow assumption
These vortices are caused by the imbalance between tH8]- Some of the disagreements were due to computational
centrifugal force and the normal pressure gradient near £70rs while some due to the improper neglect of terms like
concave surface and exhibit a quasi-constant spanwise wavétréamwise derivatives. It was until Floryan and Saricalan
length. Gortler number, as will be defined later, is theicalt ~ YSiS [6,7] that the neutral curve was finally fixed with the lo-

non-dimensional parameter characterizing the degreeiof th Cal analysis approach. A critical Gortler number (heraft
referred to a&5) of 0.4638 located at the quasi-zero spanwise

*Corresponding author (email: fs-dem@tsinghua.edu.cn) wavenumber of the neutral curve was given. They also illus-
+Contributed by FU Song (Associate Editor-in-Chief) trated that the ffect of curvature on the base flow could be
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neglected. effectively excited by free-stream vortical disturbances. In
Hall [8,9], nevertheless, reached an important conclusiontheir local analysis, the inclusion of nonparallel featudéd

that there is no unique neutral curve at the small wavenumnot lead to an improved result.

ber regime where the neutral stability is shown to depend on

how and where the boundary layer is perturbed, say, the re-

ceptivity process. An asymptotic investigation with paial 1.2 Hypersonic and nonlinear #fects

flow assumption showed that only the first few terms in the

expansion were retained. This is definitely iffazient when

nonparallel €ects became relevant. Therefore, the parallel-

flow approximation universally applied had no mathematical

justification except at high values of the spanwise wavenum-=_" " . S

ber. In fact, it was in this large wavenumber regime that the|caI issue recently due to their practical importance. The

different neutral curves merge and exhibit the asymptotic am‘[!nam path o the fransition in the compressible boundasiay

parallel-flow behavior. Higher eigen states had also been nol.lomsgid bFee;jn Ou“'rﬁd’ fo(rjlr;]tance, bg/vl\\/llorkovllr; anlg h'tghh'
ticed by Hall that the number of vortices increases with the ighted by Fedorov [14] an ong and Wang [15]. For the

mode level and, without exception, the most amplified distur ugzt?nblz boutr;]darry Iayftlarvrllci)r\]/vst 'Eﬁ:tjdmn%t?he fgs_,tretlln?i?; Sl:? c
bances correspond to the primary mode. 0 0des, the crossflow Instability a € Lorte a

- ._ity, the transition path with the minimum ambient disturban
To adequately explore the feasibility of the local analysis s :
. . . . level represents the traditional path to turbulence with lo
on the Gortler instability, the local normal eigenvaluelpr

lem had been studied extensively. Day et al. [10] compareéjlswrbance environments where the modal growth is domi-

. . ) y nant. Along this path, the laminar flow experiences the ex-
the local and marching solutions of the linear stability &qu citation of the unstable normal modes (receptivity problem
tions. They found that dtierent initial conditions led to dif- PAVILY P

ferent routes towards the same eigensolution further down'Ehe downstream amplification (linear and nonlinear) and the

stream and concluded that théfdrences were modest. Bot- final breakdown.

¢ d Luchini 1111 also found that th tofic beh Studies of the Gortler instability in the compressible
faro and Luc ini [ ]a_so ound that the asymplotc | e.av'boundary layers have been reported by a number of re-
ior far downstream is independent of the initial excitation

Goulbié et al. [12 id ial attention to th searchers. The most distinctfdirence between the incom-
Olé.plet ef '?H lg ] %au spguaF alken |oSnk ° .e.lpr.etssurepressible counterpart is the existence of a temperatuostad;
gradient of the base Tlow UsIng Falkner-okan Simianty so- o ¢ layer near the upper edge of the boundary layer where

ltlrition' TTfy appli?d .both;hehlocalj rlﬁnlo?r:alllel a?aly?ik? 3” Ithe temperature decays frafMa?) to the freestream value
€ marching analysis and showed that the focal metho a'16]. Dando and Seddougui [17] identified the “trapped-

¥vays Igl;/eds a u;llque ln e;" tr?l _cutrr:/e asa we;ll rr:cathen;_atlcall ayer mode” for large wavenumbers and the “adjustment-
ormutate Fr? em. in ag '('jn © .e'%?nvf uethot[Tha |mnst, layer mode” for large Mach numbers apart from the conven-
unique heutral curve can be drawn Indicating that In€ pertuly;, o) | layer mode” (mode W) observed in the incom-

bations of a forced wavelength begin to amplify without the pressible cases. In fact, the two new modes are equivaldnt an

consideration of where and how the disturbances wc_ere !nltl—Wi” be named as trapped-layer mode (mode T) in this article.

M he crossover of the mode W and mode T has been observed

~ _2 i . . . . .
by Hail ([39]' He fﬁund foraaG<< L ?ﬁ I “XI' whilst fotr) in their study but with unit Prandtl number and Chapman vis-
@y > 1,Gy ~ af. Herea, andG; are the local wavenumber oo 1o oo ovimations,

and Gortler number defined by Hall. The relations between | it 1. [18] examined the nonlinear development of the

Hall's formulation and the present formulatio_n (see sg()t. 2 Gériler vortices in high-speed boundary layers includiney
areay = fandGy = 2G%. Thus, the asymptotic bEhf“"Or °f breakdown via high-frequency secondary instabilities and
the neutral curve can be interpretedias< 1.G ~ 5" and  ggpler.second mode interactions. As pointed out by the au
g > 1.G ~ p°. The problem is, whether this neutral curve s in the supersonic and hypersonic transition flow, the
is tenable and in which regime the calculation is valid. AS G e instability becomes even more relevant. Hall and F
a result, the eigenvalue approach is valid either in theelarg (1 9] gemonstrated that the neutral curve at hypersonic con-
wavenumber regime or far downstream of the neutral pointyiion has distinct left and right branches and a unigue min-
i.e., in the large G number regime. imum. They showed that the neutral curve can be described
As the initial condition for the development of perturba- py a quasi-parallel theory. The destabilizirftpets of Gortler
tions, receptivity is a very important aspect of the Gartle yortices, wall cooling and gas dissociation on the Rayleigh
instability. Recently, Wu et al. [13] formulated the inltia  secondary instability in the hypersonic boundary layerewer
boundary-value problem describing the receptivity preces zlso shown [20].
as well as the development of the induced perturbation. A Hall and Malik [21] applied the asymptotic methods with
constant physical wavelength vortex was analyzed along théhe nonparallel fects considered. They obtained the right
streamwise development and four distinct regimes were idenbranch of the neutral curves fida =2, 4 and 6, respectively,
tified. Their analysis showed that the Gortler vorticeslban  although the small-wavenumber region is likely outside the

The nonparallel nature of boundary layer flows increases the
complexity of the stability problem. Compressibility con-
tributes to additional complexity on the resulting systdine
stability and transition in compressible flows have beerita cr
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range of validity of the theory. Spall and Malik [22] solved vestigated apart from the incompressible studies by Herber
the parabolized stability equations@f1) wavelength with  [35] (through temporal analysis) and by Floryan [36] (with
a finite-diference approach. Their results showed that allspatial analysis). These work illustrated that the growtie r
growth rate curves merged along the streamwise directionof the second Gortler mode is much slower than that of the
Receptivity of Gortler vortices in hypersonic boundaydes  first one over the entire wavelength in their studies. Even so
were reported by Whang and Zhong [23,24] showing that theHerbert [35] speculated thahigher eigenstates of Gortler
Gortler vortices are mainly induced by freestream stagdin vortices may well be important in laminar—turbulent transi
vortices. tion” while Floryan [36] argued thatthe growth process of
Along with the experiment conducted by Swearingenthe second mode is considerably slower than that of the first;
and Blackwelder [25], the numerical study of the nonlineartherefore, the second mode is not likely to be observed exper
Gortler stability had drawn the attention of Hall [26], $ab  imentally. As also commented by Spall and Malik [22], it
and Liu [27], Lee and Liu [28] and Li and Malik [29] in s important to find out which mode will dominate the transi-
the early 1990s. Their calculation showed good agreemention in hypersonic boundary layer flows. The present work is,
at early stages with the experiment. Hall [26] calculates th thus, aiming at this point in an attempt to clarify the bebavi
nonlinear problem with eight Fourier modes and pointed outof the multiple Gortler modes on the compressible bound-
that the nonparallelfiects were important in the nonlinear ary layer flows with both the local method and the marching
regime for the whole wavenumber. It was suggested that thenethod that solves the parabolic equations directly. Hbee,
nonlinear éects were to prevent the exponential growth. Thelocal analysis helps to identify the unstable modes and pre-
nonlinear evolution of the vortices developed inflectiqural- dicts their downstream growth. It was illustrated [23,2¥tt
files that may be receptive to the secondary Rayleigh instathe local analysis and DNS results agreed well showing the
bility. Sabry and Liu [27] investigated the Gortler insilétip hypersonic Gortler vortices can be well captured with the |
especially in the nonlinear regime with detailed discussio cal analysis in the linear regime. As will be illustrated der
on the dfects of initial conditions. Lee and Liu [28] solved the local analysis gives reliable results f8r> O(1), say,
the parabolized PDE using SIMPLE algorithm and the sen-downstream of the neutral regime.
sitivity to the set-in point of the initial disturbances walso The study of the Gortler instability, especially for incom
discussed. Li and Malik [29] focused on the secondary instapressible flows, had been based on the assumptions of large
bility. They found that the even mode (lead to varicose modeReynolds humberRe — o) and small curvaturek(— 0).
breakdown) was stronger for the large wavelengths while theThe key nondimensional parameteG®nly. From Herbert's
odd mode (lead to sinuous mode breakdown) was stronger foresult [35], the omitted curvature amkrelated terms have
the short wavelengths. a significant &ect on the neutral regime and the critical
More recently, Tandiono et al. [30] focused on the span-value is never located #t — O if the assumptiok — 0 is
wise velocity component of the Gortler flow with hot-wire abandoned. In the present study, Reandk related terms
anemometer measurement. Kim et al. [31] investigated theare retained. In the stability equations of the compressibl
onset of the Gortler vortices and derived a higher critical flows, Mach numbeMa along with the Reynolds numbBe
Gortler number as compared with the existing experimedit an and the curvaturk is also an important flow parameter char-
theoretical results. Schrader et al. [32], in their DNS,sim  acterizing the flow instability behavior. For the sake of eom
lated the receptivity, disturbance growth and breakdown inparison with the existing results, the neutral curve is @equ
the boundary layer transition flows. Experimental and theo-in the G-3 andG-A maps to distinguish the stable and unsta-
retical studies on both the steady and unsteady Gortla-ins ble flow regions. The definition of the spanwise wavenumber
bilities are reported by Boiko et al. [33] where good agree-g and the wavenumber parametecan be found ir§2 and 3.
ment between experiment and numerical calculation is ob- The present study will illustrate, for the hypersonic flows,
tained. The most dangerous four modes of the secondary irthrough the local and marching analysis, the crossover of
stability of Gortler vortices are investigated by Ren and F the mode W and the mode T @(1) wavenumber and large
using Floquet analysis [34]. All these studies fallintheme  Gortler number regime. In fact, it is at this wavenumber
of incompressible flows. Nevertheless, the Gortler sitghil regime that the instability is most likely to occur. The tws a
problem is a historical topic with emerging new issues espeproaches are expected to deliver similar results but thetmar
cially in compressible flows. ing analysis helps to express the details of the crossowkr an
confirm the result of the local analysis.

1.3 Motivation of the present work 2 Mathematical formulation of the local and

Though the crossover of the growth rate for the mode T and@rching analysis

mode W had been given by Dando et al. [17]. It should be .

noted that most of the existing studies focus on the Git)rtlerz'1 The Basic flow

vortices generated by a single mode (usually the primaryStarting from the compressible Navier-Stokes (hereaéter r
Gortler mode), multiple Gortler modes have rarely been in ferred to as N-S) equations, the governing equations for
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Gortler vortices can be derived in the following mannereTh
Xt y* z Uz,

primary N-S equations are X=,y=2,z=— k=K6,t= ) (4)
TR
gp* +V* - (p"V*) =0, (1a) Here,x; is thex-coordinate of a specified location. In the lo-
i t cal methodx; is the station where the normal mode decom-
lp* (8\/ +(V*- V*)V*) = _V'p* position is applied. In the marching methog,is the station
ot where initial conditions are specified. The N-S equatioes ar

VU (V- V) £ V- (u* (V*V* + V*V*T))’ (1b) supplgmented with the relations below.
Equation of state

oT*
ooy (G + v TT) =7 T ;R o pe 2T -
yMa
N C;;I? £V V) Pt (1c)  Sutherland law
. *ET;+S*® 3 ITS+S (©6)
\(/vh()are the viscous dissipation function in the energy equati Ho= HST; T +o OHF #sTS T+5°
lc)is
T:=273K,u;=171x 10° kg/(m-s),S* = 1104 K.
= (V- V)2 4 %(V*V* + V*V*T)Z. @) Stokes’s hypothesis
. . : o A"+2/3u" =0 1=-2/3u. (7)
The asterisk denotes the dimensional quantities in this art
cle. The compressible boundary layer flow over a concaveCalorically perfect gas
wall with a constant streamwise curvatlkeis considered. C* = constR’ = const (8)
The orthogonal curvilinear coordinate system in Figure 1 is P -
employed in the formulation. Here, the coordinaie along  Constan®Pr
the streamwise directiory, normal to the wall and in the Cor
spanwise direction. Pr = p—ﬂ = conste p = . (9)
The velocity componentsu®, v, w‘ are non- K
dimensionalized with the far-field potential velocity, (sub- In the calculation of the base flow, the curvature related

scriptoo is used for potential flow quantities), the dengity ~ terms were neglected as discussed by Floryan [6]. The com-
temperaturel*, dynamic viscosityu*, second viscosityl* pressible flow over a flat plate with zero streamwise pressure
and thermal conductivity* with their respective free stream gradients is computed as a self-similar solution to the beun

values and pressug by p:.U*?, i.e., ary layer equations [37].
U u* v v W= w D= p* 2.2 The stability equations of the disturbances
* * * 2 * *\2°
Us Us Us p(Us) 3) The disturbance equations are obtained through the decom-
T A P S position of the flow quantitieq = (5,0, ¥, W, T) into the per-
T oot T T T 0t T e turbationg as well as the primary statg which were just
P TR bation'as well as the primary stat which were |

solved as the base flow. Thus,

The length and curvature are scaled by the boundary layer _ ~
length scalef; = /v, x5/U% and the time scaled hs;/U,, Aty 20 = () +qxy.20). (10)
ie., The tilde symbol denotes the perturbed flow quantities.
Substitute eq. (10) into the full N-S equations (1), the base
flow equations are then subtracted. The disturbance equa-
tions are presented below in a compact form after the nondi-
mensional procedure as given in equations egs. (3) and (4):
9 .00 0§ 09
Fc’)t +Aax+Bay+Caz+Dq

0°q 4°g 4°g
=Hy— +Hy—— + Hyp—
a2 T Y axay T oxz
0°q 0°q 4°g
Hyye— + Hyzo— + Hyp + N, 11
T Pwage T egug, T g2 T (11)
Figure 1 (Color online) lllustration of the orthogonal curvilineapordi- Matrices (5<5)T', A, B, C, D, Hxx, Hyy, Hzz Hyy, HyzandHy,

nates for the Gortler instability analysis. represent the cdicients that are functions of thikg Ma, Pr
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numbers, curvature and base flow quantities (see AppendixR.3 Outline of the numerical methods

These nondimensional numbers are defined as: The compressible Gortler instability equations derivad i

pr Uz st u* 1:.C; egs. (16) and (19) are solved numerically with finit&el-
Re= =9 Ma= R*OOT* ,Pr= - (12)  ence approach. Analysis of the magnitude of theffocient
Heo VY Rair f oo o matrices gives
Nonlinear terms are denoted by the vedibrThe definition F~A~B~C~D~0(1), (20a)

of G is given as:
G = Revk (13) !
) Hyx ~ Hyy ~ Hyz ~ Hyy ~ Hy; ~ Hz; ~ O Re” (20b)

The disturbances and nonlinear terms are expressed by t

. . hFhis allows the simplification of eq. (16) into parabolic equ
truncated Fourier series: P g. (16) P aq

tions and eq. (19) into standard eigenvalue problem. Say, th

. . . 0% 0%
partial diferential terms respect ta H yyo—om" $mn

M N e Ixdy
qx.y.zt) = Z Z Pmn(x, y) exp(indz—imwt), (14)  ineq. (16) and quadratic teroH . in eq. (19) can be ne-
m=—M n=—N glected. In this manner, eq. (16) can be marched inxthe
direction. .
M N The disturbance vectab to be solved is the group af ~
N = Z Z Fmnexp(ingz — imwt), (15)  defined below:
m=—M n=-N O = (p1, P2, ¢N)- (21)

whereg is the spanwise wavenumber andthe frequency. Here, the subscript denotes the index of grid points in the
Substitute egs. (14) and (15) into eq. (11), the governingy-direction. The partial derivatives in egs. (16) and (19 ar
equations for the shape functions of each Fourier mode areeplaced by the correspondingi@irentiation matrices

derived

0p - 0% -
" A — =Pyd, — =Py, (22)
Hxai’;;n + Hyag;nn +Homn ay ay?
P PR P with a fourth-order central dierence scheme:
_ Loy O 6mn O fmn e (16) A . A -
ox2 Yoxgy Y oy? m ) @j-2—80j-1+8pj11— Pji2
by " 124y - (B
The matricesHy, Hy andH are given by
¢ —i-2+ 1661 — 305 + 166j:1 — §js2 (23b)
Hy=A-inBHy, (17a) ay? B ]_2(Ay)2 '
_ According to Schmid and Henningson [38], to achieve the
Hy =B -inBHy,, (17b)  highest possible accuracy, the mapping
H =D—im:_)r+inﬁc+ﬁ2n2sz. (170) y:aﬂ’withaz M’bzl.r. ﬁ’YE [_1,1]
-y Ymax — ZYi Ymax
For the linearized equation of (11), the nonlinear exparsio (24)

in eq. (15) are neglected. Here, we consider spatial stabili allows for a clustering of one half of grid points to the irvair
problem with steady motion, i.ew = 0. Further solution [0, Yi].

procedure is given be'ow in sect. 2.3. Eqs (16) and (19) are f|na”y reduced to a SyStem of al-
In the local sense, the shape function is assumed to be irgebraic equations below which can be readily solved by a
dependent ok, i.e., marching procedure and eigenvalue solver, respectively.
d(xy.2t) = & (y)expliax+ iBz—iwt) +cc. (18) LOiy = RD;, (25)
. AD = aBOD. (26)
Here, c.c. denotes complex conjugate. The normal mode . _ _ .
equation can then be expressed as: The matncei, Rin eq. (25) andﬂ, Bin eq. (26) consist
of the matrices elements in eq. (11) and the finitéedence
_ ) 5 ) _ ap 9 operators. In the solution procedure, the base flow questiti
(-iwl +iBC + D + FHz,) § + (B - iBHy,) oy Hwae are interpolated on the stability solution grid with the icub

P spline interpolation. The boundary conditions applied are
=a (-iA@ — BH P + iHXya—y) — a*Hy, (19)

0=0=w=T=0,aty=0, (27)
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0=U=W=T=0,aty - . (28)
For the eigenvalue problerﬁ», is the eigenvector andthe
eigenvalue to be solved. The spatial growth of the infinites-
imally small disturbances is obtained by solving the above
equation with Im¢) < 0. The full spectrum is calculated
with the standard QZ method. In the marching method, the
growth rateo- is defined with the use of a local scale as:

0 X
=[-Im — (In VE —. 2
o ( (a)+8x( \/—))‘/XO (29)
Figure 3 (Color online) The nonlinear development of Gortler voes

_ 00 ,\2 A ~ . . .
HereE = L _(U + 7 + W2) dyisthe dBtF'rbance energyls characterized by the contours of the streamwise velocéy.sTices are given
the streamwise coordinate of the specified locationand here ranging fromx =0.1 m to 1.2 m.

the streamwise coordinate where the initial disturban@asw
applied. The other definitions of the growth rate can be foundare shown in Figure 4. In the above two cases, the marching

i

LSS ‘,‘m;f
Q;’@u@"@@“@

:@\!L, »

in egs. (15) and (17) in the review article by Saric [5]. analysis results were tested to be grid-independent.
With the present local method, the classic neutral curves
3 Results and discussion [36] of (Mode 1 and 2, incompressible flow) and the distur-
bance profiles [28] are recovered as shown in Figures 5 and
3.1 Algorithm validation 6. Both the neutral curves and the disturbance profiles agree
The present algorithm is first tested and verified for the in-Well with the existing results. _
compressible Gortler instability flows prior to the comgse In the compressible regime, calculations are performed for

ible cases. Though formulated as a compressible flow, thdh€ parameters of El-Hady and Verma [40]. The comparisons
present code should be capable of characterizing the flo/'® Shownin Figure 7 favla = 1,2, -- -, 5 with the results of

at the low speed regime. For the 9 mm wavelength case ofVhang and Zhong [41]. o .

Li and Malik [29], the linear and nonlinear development of . Figure 7 shows a nice convergence with grid d_enS|ty. The
the Gortler vortices is shown in Figure 2 with nine Fourier I"fluénce of the far-field position is also examined here.
modes. The disturbance energy matches well with Li and_Comparlsons above show that the present work character-

Malik. A global watch of the nonlinear development of the izes well the Gortler instability in supersonic and hypeis
Gortler vortices is shown in Figure 3 flows. As can be seen 400 girds aréimient for the analysis

The feasibility for compressible cases was tested with the2d Will be used in the subsequent calculation considehieg t
first mode of TS wave in the boundary layemd = 4.5. The efficiency and accuracy. It should be pqmted out that h|gher
initial disturbances with frequenay = 0.0533, streamwise M@ number calculations need more grids to obtain a high-
wavenumbea = 0.064 and amplitudé = 0.01 was imposed ~ &ccuracy result.
atRe = 10471. The resulting disturbances of the marching
analysis agree well with the DNS profilesxat 516 down- ) )
stream of the starting point [39]. The corresponding distur 3-2 Eigen spectrum and the multiple modes

bancesiandT for the Fourier modes (0,0), (1,0) and (2,0) gjnce the present work s to study the multiple Gortler nsode
and their &ect on the flow stabilities in the compressible

100 boundary layers, it is important to identify each indivitlua

o Li&Malik v mode in the numerical computation and track down its behav-
o Li&Malik(Linear) o* . . .
10' L Energy » ior. The disturbance modes are related to the solutionseof th
i Energy P . . .
(Linear) o eigenvalue problem. The present mode tracking approach is
10 | S SR thus based on the crosschecking of the eigenvectors. For the

wall-layer modes (mode W), the primary mode (mode W1)
corresponds to the largest eigenvalue solution with one in-
dependent Gortler vortex, the secondary mode (mode W2)

Disturbance energy
2
T

107 corresponds to the second largest eigenvalue solution with

1071 two independent Gortler vortices. This is usually the dase
the incompressible problems. In the compressible boundary

10°¢ I layer flows, however, Mach number comes into play a domi-

0 0z 04 06 (m$-8 1.0 12 14 nant role in addition to the Reynolds and the Gortler nursber

that sequence may be influenced by the trapped-layer mode
Figure 2 The linear and nonlinear development of disturbance enefgy (mode T). As will be shown later, the crossover of the mode
Gortler vortices. The truncated Fourier modes of 0-8 whosvs. W1 and mode T may indeed take place.
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——, nonparallel baseflowg, results given in ref. [36].

A typical case of the spectrum of the Gortler modes and
their corresponding disturbances are shown in Figure 8. Th

2

L - T S BT S
0 5 10 15 20 25 30
y
Figure 6 (Color online) Disturbance profiles with the control paraeng
of Lee and Liu [28] atx" = 0.4 m: —, current local analysis; results

given by Lee and Liu [28].

tion velocity contours. It can be inferred that the most ampl
fied mode is mode T and the other modes are mode W1-W6.

3.3 Mode competition: The local analysis

e

existing seven Gortler modes are circled against otharqise To define a neutral curve in th8-8 map, calculations are
eigenvalues. All the Gortler eigenvalues are located en th carried out with a number of cases. Here, the curvature

guasi-imaginary-axis, i.e., the wavenumBa) ~ 0. This

—107% and Mach numbeMa =0.95, 2, 4 and 6 are fixed and

is consistent with the physical phenomenon where no streameach case is characterized with the wavenungband the
wise wave exists. The spatial structures of these modes ar@ortler numbelG. Below, the contours of the disturbance
presented in Figure 9 in the form of the streamwise perturbagrowth rate for the two most amplified Gortler modes are
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Figure 9 Contours of streamwise velocity perturbatiofof the most am-
_5.0x104 Y Y T plified seven Gortler Modes with the same control pararseisiin Figure 8.
O o o0 1oxios T and mode W1 are observed Bta =4 and 6 when the
Re (a) Gortler number are dticiently large. The switch of the dom-
Figure 8 Eigenvalue spectrum of a typical Gortler instabilitfla = 4, inating modes from the mode T to mode W1 is likely to in-
k=-10"°, g=11514 G = 9540955. fluence the transition process.

Also, as shown in Figure 11, a typical wavenumber is cho-
given in Figure 10. For the cases bfa =0.95 and 2, the sen ag = 0.91. The results obtained with the quasi-parallel
most amplified modes are the mode W1 and W2 describedbase flows are given. The compressibility shows a stabgizin
with black and red lines, respectively. While in tMa =4 effect as the local growth rate drops with the increaskaf
and 6 cases, the black lines stand for the mode T and the redumber. For this specified wavenumber, the initially most
lines for the mode W1. The curves with zero growth ratesamplified mode T is being overtaken by mode W1 when G
indicate the neutral stability curve. The results wereioleth ~ increases. The crossover points are denoted with the gircle
with both quasi-parallel and nonparallel base flows whieh ar Itis interesting to note that this mode crossover takesgdac
denoted with the dashed lines and the solid lines, resgdgtiv - the wavenumbers of the Gortler instability of practicdkin
The crossover of the contours of the growth rate for the modeest.
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In all the cases including low and high-speed flows with show little diference between the parallel and nonparallel ba-
Ma ranges from 0.01 to 6, as shown in Figures 5 and 10, thesic flows. It is interesting and significative that the growth
right branch of the neutral curve is free from the influence ofrate drops a$ increases for small wavelength cases, e.g.,
the parallel flow assumption. Whe® is large enough, the A < 500. This is essentially fferent from the incompress-
nonparallel &ects cease to influence the stability behaviorible cases [5]. In the incompressible case, the Gortldices
wherever the wavenumber is located. are likely to fall in the range oA € [10% 10°]. The increase

Before the marching analysis is performed, the normalof G generally helps to increase the growth rate once the dis-
mode solution is presented in a manner with more physicaturbance wavelength is located in the amplified region. Nev-
significance. Here, the dimensionless wavelength parameteertheless, in the currela =4 and 6 case, the maximum
A is used in place o, as it maintains the physical wave- amplification occurs withim. € [102 10°]. This is a much

length when marching downstream. The definitiomas larger range within which the crossover occurs.
Here, we fix some wavelengths for one of the hypersonic
Ut [ax cases, e.gMa =4. Growth rates of dierent wavelength are
A= v R (30) plotted in Figure 13. The wavelength parameter ranges from

100.0 to 28117.6. It is obvious that the growth rate of mode
The Greek lettert stands for the spanwise wave length T is always larger than mode W1 whé&his not too large.
and R for the radius of curvature. In a “Marching” view, This is maintained till the very large wavelength case in Fig
the crossover of the two modes actually takes place for largeire 13(b). Crossover of the growth rates takes place\for
wavelength instability as shown in Figure 12. The resultsandAg as shown by the circle mark in the figure.
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Figure 12 (Color online) Contours of the disturbance local growtleriatr the mode T and the mode W1 in tBe- A coordinates. The labels indicate the

local growth rate with a magnification of 40—, mode T;--- - - - , mode W1, crossover point.
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3.4 Mode competition: The marching analysis

The marching analysis is performed for a typical wavelength

corresponding toA 16000. The crossover occurs at
G = 21978 from the local analysis as shown in Figure 14.
In fact, four particular regions (Region T, T-W, W-T and W)
could be recognized as a prior. The following marching anal-
ysis will be performed in five cases covering these regions
respectively.

As described by Bottaro and Luchini [11], the marching
and local analysis results agree well fosuficiently large.
Benmalek and Saric [42], in their curvature-variation gfud
demonstrated that the initial conditions from the locallgna
sis produce no quantitative dependence on the locationewvhe
they are applied. To minimize the influence of the initial €on
dition, the local profile of the disturbance is applied aftex
neutral point as the initial condition and the analysis is pe
formed downstream far enough from the influence of the in
tial condition.

In the view point of the marching analysis, the multi-
modes manifest a “single mode”. The marching parameter
are listed in Table 1. These cases can be selected a pasteri
from the marching results.

Case | stands for the region far before the crossover poin
where the mode T enjoy the definite advantages over the oth
modes (Region T). As shown in Figure 15(a), though initial-
ized with diferent modes, the disturbances all prove to be
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Local growth rate

3.0x10+

2.0x10+
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— — — - Moel W1
- — = = Moel W2

3000
G

Figure 14 (Color online) Local growth rate of the mode W1, mode W2
and mode T predicted by local analysis. The parameters divtheases are
given in Table 1.

T T TRITTTTT

1.0x10*

[E——
4000

0.0

1000 2000 5000

Table 1 Marching parameters of the five cases defined in Figure 14

CASE Regions G Re(x10°) B (local scale)
| T 500-540 1.357-1.429 0.623-0.656
Il TW 1500-1540 2.823-2.873 1.300-1.320
1 W-T 2180-2220 3.622-3.666 1.664-1.684
\Y W-T 3000-3040  4.481-4.521 2.058-2.077
\Y w 4960-5000 6.266—6.300 2.878-2.893

r

e
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the mode T downstream. The mode W1 undergoes a tem-
porary presence and then a “transformation” to the mode T
while it is a short instant for the mode W2 to show up its
shape. Evolutions of the disturbance profilaré given in the
subplot of each figure. The mode W1 has one peak and the
disturbances are concentrated in the near wall region. The
difference for the mode W2 is the second peak. The mode T
also has one peak but the disturbances are detached from the
wall. Still before the crossover point, case Il shown in Fegu
15(b) supports the two modes simultaneously. The growth
rates of the two modes become closer. The mode W1 now is
able to be maintained in the boundary layer. The mode W2 is
“captured” by the mode W1 but finally “transformed” into the
mode T (Region T-W). Case Ill passes through the crossover
point in Figure 15(c). In this specific region, the growtresat

of the most amplified two modes are nearly equal. As was
expected, the two modes can co-exist while the mode W2
“transformed”into the mode W1 downstream which is finally
the most amplified (Region T-W). In Figures 15(d) and (e), a
similar process was noticed where the mode W1 overtakes

Ehe mode T (Region W-T and W).

" As a matter of fact, these eigenfunctions of the modes are

onorthogonal. When the initial condition is specified with
he eigenfunction of a particular mode for the marching-anal
[ .

ysis, it also covers the disturbance shape of other modes.
Thus, the “transformation” is actually the appearance ef th
shape (mode T or W1) due to its larger growth rate. Fur-
thermore, the initial condition derived from the normal reod
approach in fact projects onto both the W and T modes.

The above marching analysis confirmed the crossover of
the mode W1 and the mode T predicted by the local analy-
sis. In the vicinity of the crossover point (Region T-W and
W-T), the two modes will both have the chance to be excited
and develop downstream. The other mode-shape initialized
will finally develop into the shape corresponding to the most
amplified mode. Further away from the crossover point, the
most amplified mode will be the only survivor in the bound-
ary layer (Region T and W). It should be pointed out that,
when the nonlinearftects are considered, the crossover is
not obviously influenced [43,44].

As a practical application towards the engineering areas,
the RANS modeling can be formulated based on the the lin-
ear stability theory [45-47]. Therefore, it is in the Regibn
W and W-T discussed above that the multiple modes should
be considered.

4 Conclusions

In the compressible boundary layer flows, the competition
between the multiple Gortler modes is illustrated with the
local and marching analyses. Eigenvalue formulation at the
small wave number regime is proved to be inaccurate due to
the nonparallel base flow. It can be concluded that the local
method is valid either in the large wavenumber region or in
the large Gortler number region. The competition between
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Figure 15 (Color online) Local growth rate of the mode T and the mode Wd W2 predicted by marching analysis. Evolutions of theudizinceuare
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the multiple Gortler modes takes place far beyond the aéutr the wavelength is small. The most amplified wavelength has

area, i.e., the Gortler number isfBaiently large. Hence, the increased by a remarkable degree of magnitude, i.e, from

local analysis is valid. A €[10%,10°] to A € [10%, 10°]. These behaviors are caused
Investigation into the hypersonic problems brings interes by the occurrence of the mode T in hypersonic cases, it does

ing flow features dferent to the convectional incompressible Not exist in the incompressible flows as their modal shapes

flows. The increase in the Gortler number even decreasegan hardly be formed. Indeed, they are evefialilt to be

the growth rate of the trapped-layer mode (mode T) whenobserved experimentally. However, whita number is in-
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creased to a certain value, i.81a > 4, the mode T is the The disturbances are, therefore, modulated Iteint re-
most amplified at an incipient low Gortler number. With gions (Region T, T-W, W-T and W) when exposed iffelient
the further increase in Gortler number, the mode W1 finally Gortler numbers. It is also shown that the compressibigity
overtakes mode T and becomes the most dangerous modt insert stabilizing ffect on both mode T and mode W.

Appendix

In eq. (11), the matriceE, A, B, C, D, Hyx, Hyy, Hzz Hyy, Hy, andHy; are defined as follows. Only the nonzero elements of
these matrices are given. Bearing in mind that the coordénate defined in Figure 1, the corresponding Laméficgents are
h; = 1+ ky, hy = 1, hg = 1 with k representing the curvature.
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