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Competition of multiple Görtler modes in hypersonic boundary layer flows are investigated with the local and marching methods.
The wall-layer mode (mode W) and the trapped-layer mode (mode T) both occur in the compressible boundary layer where there
exists a temperature adjustment layer near the upper edge. The mode T has the largest growth rate at a lower Görtler number while
the mode W dominates at larger Görtler numbers. These two modes are both responsible for the flow transition in the hypersonic
flows especially when Görtler number is in the high value range in which the crossover of these two modes takes place. Suchhigh
Görtler numbers are virtually far beyond the neutral regime. The nonparallel base flows, therefore, cease to influence the stability
behavior of the Görtler modes. The effects of the Mach number on the multiple Görtler modes are studied within a chosen Mach
number of 0.95, 2, 4 and 6. When the flow Mach number is sufficiently large, e.g.,Ma >4, the growth rate crossover of the mode T
and mode W occurs both in the conventionalG-βmap as well as on the route downstream for a fixed wavelength disturbance. Four
particular regions (Region T, T-W, W-T and W) around the crossover point are highlighted with the marching analysis and the result
matches that of the local analysis. The initial disturbanceof a normal mode maintains the shape in its corresponding dominating
region while a shape-transformation occurs outside this region.
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1 Introduction

Since Görtler’s pioneering investigation [1] on the bound-
ary layer instabilities subjected to the negative curvature in
1940 highlighting the existence of the streamwise-oriented
counter-rotating vortices, extensive studies have been carried
out on this subject especially in the incompressible flows.
These vortices are caused by the imbalance between the
centrifugal force and the normal pressure gradient near a
concave surface and exhibit a quasi-constant spanwise wave-
length. Görtler number, as will be defined later, is the critical
non-dimensional parameter characterizing the degree of this
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imbalance. For earlier comprehensive reviews, the reader
may refer to Herbert [2], Hall [3], Floryan [4] and Saric [5].

1.1 The neutral curve: local and marching analysis

In the category of linear stability, different neutral curves had
been obtained in the past with the parallel flow assumption
[6]. Some of the disagreements were due to computational
errors while some due to the improper neglect of terms like
streamwise derivatives. It was until Floryan and Saric’s anal-
ysis [6,7] that the neutral curve was finally fixed with the lo-
cal analysis approach. A critical Görtler number (hereafter
referred to asG) of 0.4638 located at the quasi-zero spanwise
wavenumber of the neutral curve was given. They also illus-
trated that the effect of curvature on the base flow could be
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neglected.
Hall [8,9], nevertheless, reached an important conclusion

that there is no unique neutral curve at the small wavenum-
ber regime where the neutral stability is shown to depend on
how and where the boundary layer is perturbed, say, the re-
ceptivity process. An asymptotic investigation with parallel
flow assumption showed that only the first few terms in the
expansion were retained. This is definitely insufficient when
nonparallel effects became relevant. Therefore, the parallel-
flow approximation universally applied had no mathematical
justification except at high values of the spanwise wavenum-
ber. In fact, it was in this large wavenumber regime that the
different neutral curves merge and exhibit the asymptotic and
parallel-flow behavior. Higher eigen states had also been no-
ticed by Hall that the number of vortices increases with the
mode level and, without exception, the most amplified distur-
bances correspond to the primary mode.

To adequately explore the feasibility of the local analysis
on the Görtler instability, the local normal eigenvalue prob-
lem had been studied extensively. Day et al. [10] compared
the local and marching solutions of the linear stability equa-
tions. They found that different initial conditions led to dif-
ferent routes towards the same eigensolution further down-
stream and concluded that the differences were modest. Bot-
taro and Luchini [11] also found that the asymptotic behav-
ior far downstream is independent of the initial excitation.
Goulpié et al. [12] paid special attention to the pressure
gradient of the base flow using Falkner-Skan similarity so-
lution. They applied both the local nonparallel analysis and
the marching analysis and showed that the local method al-
ways gives a unique neutral curve as a well mathematically
formulated problem. In fact, in the eigenvalue formations,a
unique neutral curve can be drawn indicating that the pertur-
bations of a forced wavelength begin to amplify without the
consideration of where and how the disturbances were initi-
ated. The asymptotic behavior of the neutral curve is given
by Hall [9]. He found forαx ≪ 1,Gx ∼ α−2

x , whilst for
αx ≫ 1,Gx ∼ α4

x. Hereαx andGx are the local wavenumber
and Görtler number defined by Hall. The relations between
Hall’s formulation and the present formulation (see sect. 2)
areαx = β andGx = 2G2. Thus, the asymptotic behavior of
the neutral curve can be interpreted asβ ≪ 1,G ∼ β−1 and
β ≫ 1,G ∼ β2. The problem is, whether this neutral curve
is tenable and in which regime the calculation is valid. As
a result, the eigenvalue approach is valid either in the large
wavenumber regime or far downstream of the neutral point,
i.e., in the large G number regime.

As the initial condition for the development of perturba-
tions, receptivity is a very important aspect of the Görtler
instability. Recently, Wu et al. [13] formulated the initial-
boundary-value problem describing the receptivity process
as well as the development of the induced perturbation. A
constant physical wavelength vortex was analyzed along the
streamwise development and four distinct regimes were iden-
tified. Their analysis showed that the Görtler vortices canbe

effectively excited by free-stream vortical disturbances. In
their local analysis, the inclusion of nonparallel features did
not lead to an improved result.

1.2 Hypersonic and nonlinear effects

The nonparallel nature of boundary layer flows increases the
complexity of the stability problem. Compressibility con-
tributes to additional complexity on the resulting system.The
stability and transition in compressible flows have been a crit-
ical issue recently due to their practical importance. The
main path to the transition in the compressible boundary layer
flows had been outlined, for instance, by Morkovin and high-
lighted by Fedorov [14] and Zhong and Wang [15]. For the
unstable boundary layer flows including the first and the sec-
ond modes, the crossflow instability and the Görtler instabil-
ity, the transition path with the minimum ambient disturbance
level represents the traditional path to turbulence with low
disturbance environments where the modal growth is domi-
nant. Along this path, the laminar flow experiences the ex-
citation of the unstable normal modes (receptivity problem),
the downstream amplification (linear and nonlinear) and the
final breakdown.

Studies of the Görtler instability in the compressible
boundary layers have been reported by a number of re-
searchers. The most distinct difference between the incom-
pressible counterpart is the existence of a temperature adjust-
ment layer near the upper edge of the boundary layer where
the temperature decays fromO(Ma2) to the freestream value
[16]. Dando and Seddougui [17] identified the “trapped-
layer mode” for large wavenumbers and the “adjustment-
layer mode” for large Mach numbers apart from the conven-
tional “wall layer mode” (mode W) observed in the incom-
pressible cases. In fact, the two new modes are equivalent and
will be named as trapped-layer mode (mode T) in this article.
The crossover of the mode W and mode T has been observed
in their study but with unit Prandtl number and Chapman vis-
cosity law approximations.

Li et al. [18] examined the nonlinear development of the
Görtler vortices in high-speed boundary layers includingthe
breakdown via high-frequency secondary instabilities and
Görtler-second mode interactions. As pointed out by the au-
thors, in the supersonic and hypersonic transition flow, the
Görtler instability becomes even more relevant. Hall and Fu
[19] demonstrated that the neutral curve at hypersonic con-
dition has distinct left and right branches and a unique min-
imum. They showed that the neutral curve can be described
by a quasi-parallel theory. The destabilizing effects of Görtler
vortices, wall cooling and gas dissociation on the Rayleigh
secondary instability in the hypersonic boundary layer were
also shown [20].

Hall and Malik [21] applied the asymptotic methods with
the nonparallel effects considered. They obtained the right
branch of the neutral curves forMa =2, 4 and 6, respectively,
although the small-wavenumber region is likely outside the
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range of validity of the theory. Spall and Malik [22] solved
the parabolized stability equations atO(1) wavelength with
a finite-difference approach. Their results showed that all
growth rate curves merged along the streamwise direction.
Receptivity of Görtler vortices in hypersonic boundary layers
were reported by Whang and Zhong [23,24] showing that the
Görtler vortices are mainly induced by freestream standing
vortices.

Along with the experiment conducted by Swearingen
and Blackwelder [25], the numerical study of the nonlinear
Görtler stability had drawn the attention of Hall [26], Sabry
and Liu [27], Lee and Liu [28] and Li and Malik [29] in
the early 1990s. Their calculation showed good agreement
at early stages with the experiment. Hall [26] calculated the
nonlinear problem with eight Fourier modes and pointed out
that the nonparallel effects were important in the nonlinear
regime for the whole wavenumber. It was suggested that the
nonlinear effects were to prevent the exponential growth. The
nonlinear evolution of the vortices developed inflectionalpro-
files that may be receptive to the secondary Rayleigh insta-
bility. Sabry and Liu [27] investigated the Görtler instability
especially in the nonlinear regime with detailed discussions
on the effects of initial conditions. Lee and Liu [28] solved
the parabolized PDE using SIMPLE algorithm and the sen-
sitivity to the set-in point of the initial disturbances wasalso
discussed. Li and Malik [29] focused on the secondary insta-
bility. They found that the even mode (lead to varicose mode
breakdown) was stronger for the large wavelengths while the
odd mode (lead to sinuous mode breakdown) was stronger for
the short wavelengths.

More recently, Tandiono et al. [30] focused on the span-
wise velocity component of the Görtler flow with hot-wire
anemometer measurement. Kim et al. [31] investigated the
onset of the Görtler vortices and derived a higher critical
Görtler number as compared with the existing experiment and
theoretical results. Schrader et al. [32], in their DNS, simu-
lated the receptivity, disturbance growth and breakdown in
the boundary layer transition flows. Experimental and theo-
retical studies on both the steady and unsteady Görtler insta-
bilities are reported by Boiko et al. [33] where good agree-
ment between experiment and numerical calculation is ob-
tained. The most dangerous four modes of the secondary in-
stability of Görtler vortices are investigated by Ren and Fu
using Floquet analysis [34]. All these studies fall in the scope
of incompressible flows. Nevertheless, the Görtler stability
problem is a historical topic with emerging new issues espe-
cially in compressible flows.

1.3 Motivation of the present work

Though the crossover of the growth rate for the mode T and
mode W had been given by Dando et al. [17]. It should be
noted that most of the existing studies focus on the Görtler
vortices generated by a single mode (usually the primary
Görtler mode), multiple Görtler modes have rarely been in-

vestigated apart from the incompressible studies by Herbert
[35] (through temporal analysis) and by Floryan [36] (with
spatial analysis). These work illustrated that the growth rate
of the second Görtler mode is much slower than that of the
first one over the entire wavelength in their studies. Even so,
Herbert [35] speculated that “higher eigenstates of Görtler
vortices may well be important in laminar–turbulent transi-
tion” while Floryan [36] argued that “the growth process of
the second mode is considerably slower than that of the first;
therefore, the second mode is not likely to be observed exper-
imentally”. As also commented by Spall and Malik [22], it
is important to find out which mode will dominate the transi-
tion in hypersonic boundary layer flows. The present work is,
thus, aiming at this point in an attempt to clarify the behavior
of the multiple Görtler modes on the compressible bound-
ary layer flows with both the local method and the marching
method that solves the parabolic equations directly. Here,the
local analysis helps to identify the unstable modes and pre-
dicts their downstream growth. It was illustrated [23,24] that
the local analysis and DNS results agreed well showing the
hypersonic Görtler vortices can be well captured with the lo-
cal analysis in the linear regime. As will be illustrated here,
the local analysis gives reliable results forG > O(1), say,
downstream of the neutral regime.

The study of the Görtler instability, especially for incom-
pressible flows, had been based on the assumptions of large
Reynolds number (Re→ ∞) and small curvature (k → 0).
The key nondimensional parameter isG only. From Herbert’s
result [35], the omitted curvature andRerelated terms have
a significant effect on the neutral regime and the criticalG
value is never located atβ → 0 if the assumptionk → 0 is
abandoned. In the present study, theReandk related terms
are retained. In the stability equations of the compressible
flows, Mach numberMa along with the Reynolds numberRe
and the curvaturek is also an important flow parameter char-
acterizing the flow instability behavior. For the sake of com-
parison with the existing results, the neutral curve is acquired
in theG-β andG-Λ maps to distinguish the stable and unsta-
ble flow regions. The definition of the spanwise wavenumber
β and the wavenumber parameterΛ can be found in§2 and 3.

The present study will illustrate, for the hypersonic flows,
through the local and marching analysis, the crossover of
the mode W and the mode T atO(1) wavenumber and large
Görtler number regime. In fact, it is at this wavenumber
regime that the instability is most likely to occur. The two ap-
proaches are expected to deliver similar results but the march-
ing analysis helps to express the details of the crossover and
confirm the result of the local analysis.

2 Mathematical formulation of the local and
marching analysis

2.1 The Basic flow

Starting from the compressible Navier-Stokes (hereafter re-
ferred to as N-S) equations, the governing equations for
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Görtler vortices can be derived in the following manner. The
primary N-S equations are

∂ρ∗

∂t∗
+ ∇∗ · (ρ∗V∗) = 0, (1a)

lρ∗
(

∂V∗

∂t∗
+ (V∗ · ∇∗) V∗

)

= −∇∗p∗

+ ∇∗ (λ∗ (∇∗ · V∗)) + ∇∗ ·
(

µ∗
(

∇∗V∗ + ∇∗V∗T
))

, (1b)

lρ∗Cp
∗
(

∂T∗

∂t∗
+ (V∗ · ∇∗) T∗

)

= ∇∗ · (κ∗∇∗T∗)

+
∂p∗

∂t∗
+ (V∗ · ∇∗) p∗ + Φ∗, (1c)

where the viscous dissipation function in the energy equation
(1c) is

Φ∗ = λ∗(∇∗ · V∗)2
+
µ∗

2

(

∇∗V∗ + ∇∗V∗T
)2
. (2)

The asterisk denotes the dimensional quantities in this arti-
cle. The compressible boundary layer flow over a concave
wall with a constant streamwise curvaturek∗ is considered.
The orthogonal curvilinear coordinate system in Figure 1 is
employed in the formulation. Here, the coordinatex is along
the streamwise direction,y normal to the wall andz in the
spanwise direction.

The velocity componentsu∗, v∗, w∗ are non-
dimensionalized with the far-field potential velocityU∗∞ (sub-
script∞ is used for potential flow quantities), the densityρ∗,
temperatureT∗, dynamic viscosityµ∗, second viscosityλ∗

and thermal conductivityκ∗ with their respective free stream
values and pressurep∗ by ρ∗∞U∗2∞ , i.e.,

u =
u∗

U∗∞
, v =

v∗

U∗∞
,w =

w∗

U∗∞
, p =

p∗

ρ∗∞(U∗∞)2
,

ρ =
ρ∗

ρ∗∞
,T =

T∗

T∗∞
, µ =

µ∗

µ∗∞
, λ =

λ∗

λ∗∞
, κ =

κ∗

κ∗∞
.

(3)

The length and curvature are scaled by the boundary layer
length scaleδ∗0 =

√

ν∗∞x∗0/U
∗
∞ and the time scaled byδ∗0/U

∗
∞,

i.e.,

y

xz

U∞

Figure 1 (Color online) Illustration of the orthogonal curvilinearcoordi-

nates for the Görtler instability analysis.

x =
x∗

δ∗0
, y =

y∗

δ∗0
, z=

z∗

δ∗0
, k = k∗δ∗0, t =

t∗U∗∞
δ∗0
. (4)

Here,x∗0 is thex-coordinate of a specified location. In the lo-
cal method,x∗0 is the station where the normal mode decom-
position is applied. In the marching method,x∗0 is the station
where initial conditions are specified. The N-S equations are
supplemented with the relations below.
Equation of state

p∗ = ρ∗R∗T∗ ⇔ p =
ρT

γMa2
. (5)

Sutherland law

µ∗ = µ∗s
T∗

T∗s

T∗s + S∗

T∗ + S∗
⇔ µ = µs

T
Ts

Ts + S
T + S

. (6)

T∗s = 273 K,µ∗s = 1.71× 10−5 kg/(m·s),S∗ = 110.4 K.
Stokes’s hypothesis

λ∗ + 2/3µ∗ = 0⇔ λ = −2/3µ. (7)

Calorically perfect gas

C∗p = const,R∗ = const. (8)

ConstantPr

Pr =
Cp
∗µ∗

κ∗
= const⇔ µ = κ. (9)

In the calculation of the base flow, the curvature related
terms were neglected as discussed by Floryan [6]. The com-
pressible flow over a flat plate with zero streamwise pressure
gradients is computed as a self-similar solution to the bound-
ary layer equations [37].

2.2 The stability equations of the disturbances

The disturbance equations are obtained through the decom-
position of the flow quantities ˜q =

(

ρ̃, ũ, ṽ, w̃, T̃
)

into the per-
turbationq̃ as well as the primary stateq0 which were just
solved as the base flow. Thus,

q (x, y, z, t) = q0 (x, y) + q̃ (x, y, z, t) . (10)

The tilde symbol denotes the perturbed flow quantities.
Substitute eq. (10) into the full N-S equations (1), the base
flow equations are then subtracted. The disturbance equa-
tions are presented below in a compact form after the nondi-
mensional procedure as given in equations eqs. (3) and (4):

Γ
∂q̃
∂t
+ A
∂q̃
∂x
+ B
∂q̃
∂y
+ C
∂q̃
∂z
+ Dq̃

= Hxx
∂2q̃
∂x2
+Hxy

∂2q̃
∂x∂y

+Hxz
∂2q̃
∂xz

+Hyy
∂2q̃
∂y2
+Hyz

∂2q̃
∂y∂z

+Hzz
∂2q̃
∂z2
+ N. (11)

Matrices (5×5)Γ, A, B, C, D, Hxx, Hyy, Hzz, Hxy, Hyz andHxz

represent the coefficients that are functions of theRe, Ma, Pr
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numbers, curvature and base flow quantities (see Appendix).
These nondimensional numbers are defined as:

Re=
ρ∗∞U∗∞δ

∗
0

µ∗∞
,Ma =

U∗∞
√

γR∗airT
∗
∞
,Pr =

µ∗∞C∗p
κ∗∞
. (12)

Nonlinear terms are denoted by the vectorN. The definition
of G is given as:

G = Re
√

k. (13)

The disturbances and nonlinear terms are expressed by the
truncated Fourier series:

q̃ (x, y, z, t) =
M
∑

m=−M

N
∑

n=−N

ϕ̂mn(x, y) exp(inβz− imωt) , (14)

N =
M
∑

m=−M

N
∑

n=−N

F̂mnexp(inβz− imωt), (15)

whereβ is the spanwise wavenumber andω the frequency.
Substitute eqs. (14) and (15) into eq. (11), the governing
equations for the shape functions of each Fourier mode are
derived

Hx
∂ϕ̂mn

∂x
+Hy

∂ϕ̂mn

∂y
+Hϕ̂mn

= Hxx
∂2ϕ̂mn

∂x2
+Hxy

∂2ϕ̂mn

∂x∂y
+Hyy

∂2ϕ̂mn

∂y2
+ F̂mn. (16)

The matricesHx, Hy andH are given by

Hx = A − inβHxz, (17a)

Hy = B − inβHyz, (17b)

H = D − imωΓ + inβC + β2n2Hzz. (17c)

For the linearized equation of (11), the nonlinear expansions
in eq. (15) are neglected. Here, we consider spatial stability
problem with steady motion, i.e.,ω ≡ 0. Further solution
procedure is given below in sect. 2.3.

In the local sense, the shape function is assumed to be in-
dependent ofx, i.e.,

q̃ (x, y, z, t) = ϕ̂ (y) exp(iαx+ iβz− iωt) + c.c. (18)

Here, c.c. denotes complex conjugate. The normal mode
equation can then be expressed as:

(

−iωΓ + iβC + D + β2Hzz

)

ϕ̂ +
(

B − iβHyz

) ∂ϕ̂

∂y
−Hyy

∂2ϕ̂

∂y2

= α

(

−iAϕ̂ − βHxzϕ̂ + iHxy
∂ϕ̂

∂y

)

− α2Hxxϕ̂, (19)

2.3 Outline of the numerical methods

The compressible Görtler instability equations derived in
eqs. (16) and (19) are solved numerically with finite differ-
ence approach. Analysis of the magnitude of the coefficient
matrices gives

Γ ∼ A ∼ B ∼ C ∼ D ∼ O (1) , (20a)

Hxx ∼ Hxy ∼ Hxz ∼ Hyy ∼ Hyz ∼ Hzz∼ O
(

1
Re

)

. (20b)

This allows the simplification of eq. (16) into parabolic equa-
tions and eq. (19) into standard eigenvalue problem. Say, the

partial differential terms respect tox: Hxx
∂2ϕ̂mn

∂x2
,Hxy

∂2ϕ̂mn

∂x∂y
in eq. (16) and quadratic termα2Hxxϕ̂ in eq. (19) can be ne-
glected. In this manner, eq. (16) can be marched in thex-
direction.

The disturbance vector̂Φ to be solved is the group of ˆϕ
defined below:

Φ̂ = (ϕ̂1, ϕ̂2, · · · ϕ̂N) . (21)

Here, the subscript denotes the index of grid points in the
y-direction. The partial derivatives in eqs. (16) and (19) are
replaced by the corresponding differentiation matrices

∂ϕ̂

∂y
= PyΦ̂,

∂2ϕ̂

∂y2
= PyyΦ̂ (22)

with a fourth-order central difference scheme:

∂ϕ̂ j

∂y
=
ϕ̂ j−2 − 8ϕ̂ j−1 + 8ϕ̂ j+1 − ϕ̂ j+2

12∆y
, (23a)

∂2ϕ̂ j

∂y2
=
−ϕ̂ j−2 + 16ϕ̂ j−1 − 30ϕ̂ j + 16ϕ̂ j+1 − ϕ̂ j+2

12(∆y)2
. (23b)

According to Schmid and Henningson [38], to achieve the
highest possible accuracy, the mapping

y = a
1+ ȳ
b− ȳ

,with a =
yiymax

ymax− 2yi
, b = 1+

2a
ymax
, ȳ ∈ [−1, 1]

(24)
allows for a clustering of one half of grid points to the interval
[0, yi].

Eqs. (16) and (19) are finally reduced to a system of al-
gebraic equations below which can be readily solved by a
marching procedure and eigenvalue solver, respectively.

LΦ̂i+1 = RΦ̂i , (25)

AΦ̂ = αBΦ̂. (26)

The matricesL, R in eq. (25) andA, B in eq. (26) consist
of the matrices elements in eq. (11) and the finite difference
operators. In the solution procedure, the base flow quantities
are interpolated on the stability solution grid with the cubic
spline interpolation. The boundary conditions applied are

û = v̂ = ŵ = T̂ = 0, aty = 0, (27)

Jie Ren



Ren J, et al. Sci China-Phys Mech Astron June (2014) Vol. 57 No. 6 1183

û = v̂ = ŵ = T̂ = 0, aty→ ∞. (28)

For the eigenvalue problem,Φ̂ is the eigenvector andα the
eigenvalue to be solved. The spatial growth of the infinites-
imally small disturbances is obtained by solving the above
equation with Im(α) < 0. The full spectrum is calculated
with the standard QZ method. In the marching method, the
growth rateσ is defined with the use of a local scale as:

σ =

(

−Im(α) +
∂

∂x

(

ln
√

E
)

) √

x
x0
. (29)

Here,E =
∫ ∞
0

(

û2 + v̂2 + ŵ2
)

dy is the disturbance energy,x is
the streamwise coordinate of the specified location andx0 is
the streamwise coordinate where the initial disturbances were
applied. The other definitions of the growth rate can be found
in eqs. (15) and (17) in the review article by Saric [5].

3 Results and discussion

3.1 Algorithm validation

The present algorithm is first tested and verified for the in-
compressible Görtler instability flows prior to the compress-
ible cases. Though formulated as a compressible flow, the
present code should be capable of characterizing the flow
at the low speed regime. For the 9 mm wavelength case of
Li and Malik [29], the linear and nonlinear development of
the Görtler vortices is shown in Figure 2 with nine Fourier
modes. The disturbance energy matches well with Li and
Malik. A global watch of the nonlinear development of the
Görtler vortices is shown in Figure 3.

The feasibility for compressible cases was tested with the
first mode of TS wave in the boundary layer ofMa = 4.5. The
initial disturbances with frequencyω = 0.0533, streamwise
wavenumberα = 0.064 and amplitudeA = 0.01 was imposed
at Re0 = 10471. The resulting disturbances of the marching
analysis agree well with the DNS profiles atx = 516 down-
stream of the starting point [39]. The corresponding distur-
bancesu andT for the Fourier modes (0,0), (1,0) and (2,0)

x (m)
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e
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y
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Figure 2 The linear and nonlinear development of disturbance energyof

Görtler vortices. The truncated Fourier modes of 0–8 were shown.

Figure 3 (Color online) The nonlinear development of Görtler vortices

characterized by the contours of the streamwise velocity. Ten slices are given

here ranging fromx =0.1 m to 1.2 m.

are shown in Figure 4. In the above two cases, the marching
analysis results were tested to be grid-independent.

With the present local method, the classic neutral curves
[36] of (Mode 1 and 2, incompressible flow) and the distur-
bance profiles [28] are recovered as shown in Figures 5 and
6. Both the neutral curves and the disturbance profiles agree
well with the existing results.

In the compressible regime, calculations are performed for
the parameters of El-Hady and Verma [40]. The comparisons
are shown in Figure 7 forMa = 1, 2, · · · , 5 with the results of
Whang and Zhong [41].

Figure 7 shows a nice convergence with grid density. The
influence of the far-field position is also examined here.
Comparisons above show that the present work character-
izes well the Görtler instability in supersonic and hypersonic
flows. As can be seen 400 girds are sufficient for the analysis
and will be used in the subsequent calculation considering the
efficiency and accuracy. It should be pointed out that higher
Ma number calculations need more grids to obtain a high-
accuracy result.

3.2 Eigen spectrum and the multiple modes

Since the present work is to study the multiple Görtler modes
and their effect on the flow stabilities in the compressible
boundary layers, it is important to identify each individual
mode in the numerical computation and track down its behav-
ior. The disturbance modes are related to the solutions of the
eigenvalue problem. The present mode tracking approach is
thus based on the crosschecking of the eigenvectors. For the
wall-layer modes (mode W), the primary mode (mode W1)
corresponds to the largest eigenvalue solution with one in-
dependent Görtler vortex, the secondary mode (mode W2)
corresponds to the second largest eigenvalue solution with
two independent Görtler vortices. This is usually the casein
the incompressible problems. In the compressible boundary
layer flows, however, Mach number comes into play a domi-
nant role in addition to the Reynolds and the Görtler numbers,
that sequence may be influenced by the trapped-layer mode
(mode T). As will be shown later, the crossover of the mode
W1 and mode T may indeed take place.
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A typical case of the spectrum of the Görtler modes and
their corresponding disturbances are shown in Figure 8. The
existing seven Görtler modes are circled against other pseudo
eigenvalues. All the Görtler eigenvalues are located on the
quasi-imaginary-axis, i.e., the wavenumberRe(α) ≈ 0. This
is consistent with the physical phenomenon where no stream-
wise wave exists. The spatial structures of these modes are
presented in Figure 9 in the form of the streamwise perturba-
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1.0
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w

Figure 6 (Color online) Disturbance profiles with the control parameters

of Lee and Liu [28] atx∗ = 0.4 m: ——, current local analysis;� results

given by Lee and Liu [28].

tion velocity contours. It can be inferred that the most ampli-
fied mode is mode T and the other modes are mode W1–W6.

3.3 Mode competition: The local analysis

To define a neutral curve in theG-β map, calculations are
carried out with a number of cases. Here, the curvaturek =
−10−6 and Mach numberMa =0.95, 2, 4 and 6 are fixed and
each case is characterized with the wavenumberβ and the
Görtler numberG. Below, the contours of the disturbance
growth rate for the two most amplified Görtler modes are

Jie Ren
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given in Figure 10. For the cases ofMa =0.95 and 2, the
most amplified modes are the mode W1 and W2 described
with black and red lines, respectively. While in theMa =4
and 6 cases, the black lines stand for the mode T and the red
lines for the mode W1. The curves with zero growth rates
indicate the neutral stability curve. The results were obtained
with both quasi-parallel and nonparallel base flows which are
denoted with the dashed lines and the solid lines, respectively.
The crossover of the contours of the growth rate for the mode

T W1 W2 W3 W4 W5 W6

15 0
*δ

Figure 9 Contours of streamwise velocity perturbation ˆu for the most am-

plified seven Görtler Modes with the same control parameters as in Figure 8.

T and mode W1 are observed atMa = 4 and 6 when the
Görtler number are sufficiently large. The switch of the dom-
inating modes from the mode T to mode W1 is likely to in-
fluence the transition process.

Also, as shown in Figure 11, a typical wavenumber is cho-
sen asβ = 0.91. The results obtained with the quasi-parallel
base flows are given. The compressibility shows a stabilizing
effect as the local growth rate drops with the increase ofMa
number. For this specified wavenumber, the initially most
amplified mode T is being overtaken by mode W1 when G
increases. The crossover points are denoted with the circles.
It is interesting to note that this mode crossover takes place at
the wavenumbers of the Görtler instability of practical inter-
est.
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In all the cases including low and high-speed flows with
Ma ranges from 0.01 to 6, as shown in Figures 5 and 10, the
right branch of the neutral curve is free from the influence of
the parallel flow assumption. WhenG is large enough, the
nonparallel effects cease to influence the stability behavior
wherever the wavenumber is located.

Before the marching analysis is performed, the normal
mode solution is presented in a manner with more physical
significance. Here, the dimensionless wavelength parameter
Λ is used in place ofβ, as it maintains the physical wave-
length when marching downstream. The definition ofΛ is

Λ =
U∗∞λ

∗

υ∗∞

√

λ∗

R∗
. (30)

The Greek letterλ stands for the spanwise wave length
and R for the radius of curvature. In a “Marching” view,
the crossover of the two modes actually takes place for large
wavelength instability as shown in Figure 12. The results

show little difference between the parallel and nonparallel ba-
sic flows. It is interesting and significative that the growth
rate drops asG increases for small wavelength cases, e.g.,
Λ 6 500. This is essentially different from the incompress-
ible cases [5]. In the incompressible case, the Görtler vortices
are likely to fall in the range ofΛ ∈ [102, 103]. The increase
of G generally helps to increase the growth rate once the dis-
turbance wavelength is located in the amplified region. Nev-
ertheless, in the currentMa =4 and 6 case, the maximum
amplification occurs withinΛ ∈ [102, 105]. This is a much
larger range within which the crossover occurs.

Here, we fix some wavelengths for one of the hypersonic
cases, e.g.,Ma =4. Growth rates of different wavelength are
plotted in Figure 13. The wavelength parameter ranges from
100.0 to 28117.6. It is obvious that the growth rate of mode
T is always larger than mode W1 whenG is not too large.
This is maintained till the very large wavelength case in Fig-
ure 13(b). Crossover of the growth rates takes place forΛ8

andΛ9 as shown by the circle mark in the figure.
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3.4 Mode competition: The marching analysis

The marching analysis is performed for a typical wavelength
corresponding toΛ = 16000. The crossover occurs at
G = 2197.8 from the local analysis as shown in Figure 14.
In fact, four particular regions (Region T, T-W, W-T and W)
could be recognized as a prior. The following marching anal-
ysis will be performed in five cases covering these regions,
respectively.

As described by Bottaro and Luchini [11], the marching
and local analysis results agree well forx sufficiently large.
Benmalek and Saric [42], in their curvature-variation study,
demonstrated that the initial conditions from the local analy-
sis produce no quantitative dependence on the location where
they are applied. To minimize the influence of the initial con-
dition, the local profile of the disturbance is applied afterthe
neutral point as the initial condition and the analysis is per-
formed downstream far enough from the influence of the ini-
tial condition.

In the view point of the marching analysis, the multi-
modes manifest a “single mode”. The marching parameters
are listed in Table 1. These cases can be selected a posteriori
from the marching results.

Case I stands for the region far before the crossover point
where the mode T enjoy the definite advantages over the other
modes (Region T). As shown in Figure 15(a), though initial-
ized with different modes, the disturbances all prove to be
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Figure 14 (Color online) Local growth rate of the mode W1, mode W2

and mode T predicted by local analysis. The parameters of thefive cases are

given in Table 1.

Table 1 Marching parameters of the five cases defined in Figure 14

CASE Regions G Re(×106) β (local scale)

I T 500–540 1.357–1.429 0.623–0.656

II T-W 1500–1540 2.823–2.873 1.300–1.320

III W-T 2180–2220 3.622–3.666 1.664–1.684

IV W-T 3000–3040 4.481–4.521 2.058–2.077

V W 4960–5000 6.266–6.300 2.878–2.893

the mode T downstream. The mode W1 undergoes a tem-
porary presence and then a “transformation” to the mode T
while it is a short instant for the mode W2 to show up its
shape. Evolutions of the disturbance profile ˆu are given in the
subplot of each figure. The mode W1 has one peak and the
disturbances are concentrated in the near wall region. The
difference for the mode W2 is the second peak. The mode T
also has one peak but the disturbances are detached from the
wall. Still before the crossover point, case II shown in Figure
15(b) supports the two modes simultaneously. The growth
rates of the two modes become closer. The mode W1 now is
able to be maintained in the boundary layer. The mode W2 is
“captured” by the mode W1 but finally “transformed” into the
mode T (Region T-W). Case III passes through the crossover
point in Figure 15(c). In this specific region, the growth rates
of the most amplified two modes are nearly equal. As was
expected, the two modes can co-exist while the mode W2
“transformed” into the mode W1 downstream which is finally
the most amplified (Region T-W). In Figures 15(d) and (e), a
similar process was noticed where the mode W1 overtakes
the mode T (Region W-T and W).

As a matter of fact, these eigenfunctions of the modes are
nonorthogonal. When the initial condition is specified with
the eigenfunction of a particular mode for the marching anal-
ysis, it also covers the disturbance shape of other modes.
Thus, the “transformation” is actually the appearance of the
shape (mode T or W1) due to its larger growth rate. Fur-
thermore, the initial condition derived from the normal mode
approach in fact projects onto both the W and T modes.

The above marching analysis confirmed the crossover of
the mode W1 and the mode T predicted by the local analy-
sis. In the vicinity of the crossover point (Region T-W and
W-T), the two modes will both have the chance to be excited
and develop downstream. The other mode-shape initialized
will finally develop into the shape corresponding to the most
amplified mode. Further away from the crossover point, the
most amplified mode will be the only survivor in the bound-
ary layer (Region T and W). It should be pointed out that,
when the nonlinear effects are considered, the crossover is
not obviously influenced [43,44].

As a practical application towards the engineering areas,
the RANS modeling can be formulated based on the the lin-
ear stability theory [45–47]. Therefore, it is in the RegionT-
W and W-T discussed above that the multiple modes should
be considered.

4 Conclusions

In the compressible boundary layer flows, the competition
between the multiple Görtler modes is illustrated with the
local and marching analyses. Eigenvalue formulation at the
small wave number regime is proved to be inaccurate due to
the nonparallel base flow. It can be concluded that the local
method is valid either in the large wavenumber region or in
the large Görtler number region. The competition between
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the multiple Görtler modes takes place far beyond the neutral
area, i.e., the Görtler number is sufficiently large. Hence, the
local analysis is valid.

Investigation into the hypersonic problems brings interest-
ing flow features different to the convectional incompressible
flows. The increase in the Görtler number even decreases
the growth rate of the trapped-layer mode (mode T) when

the wavelength is small. The most amplified wavelength has
increased by a remarkable degree of magnitude, i.e, from
Λ ∈ [102, 103] to Λ ∈ [103, 105]. These behaviors are caused
by the occurrence of the mode T in hypersonic cases, it does
not exist in the incompressible flows as their modal shapes
can hardly be formed. Indeed, they are even difficult to be
observed experimentally. However, whenMa number is in-
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creased to a certain value, i.e.,Ma > 4, the mode T is the
most amplified at an incipient low Görtler number. With
the further increase in Görtler number, the mode W1 finally
overtakes mode T and becomes the most dangerous mode.

The disturbances are, therefore, modulated by different re-
gions (Region T, T-W, W-T and W) when exposed in different
Görtler numbers. It is also shown that the compressibilityis
to insert stabilizing effect on both mode T and mode W.

Appendix

In eq. (11), the matricesΓ, A, B, C, D, Hxx, Hyy, Hzz, Hxy, Hyz andHxz are defined as follows. Only the nonzero elements of
these matrices are given. Bearing in mind that the coordinates are defined in Figure 1, the corresponding Lame coefficients are
h1 = 1+ ky, h2 = 1, h3 = 1 with k representing the curvature.

Matrix Γ

Γ11 = 1, Γ22 = ρ, Γ33 = ρ, Γ44 = ρ,Γ51 = −
γ − 1
γ

T, Γ55 =
ρ

γ
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AIAA J, 1982, 20(3): 316–324

7 Floryan J M, Saric W S. Wavelength selection and growth of G¨ortler vor-

tices. AIAA J, 1984, 22(11): 1529–1538
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11 Bottaro A, Luchini P. Görtler vortices: Are they amenable to local eigen-

value analysis? Eur J Mech-B/Fluids, 1999, 18(1): 47–65
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