PHYSICAL REVIEW FLUIDS 6, L082501 (2021)
[ letter

Model reduction of traveling-wave problems via Radon cumulative
distribution transform

Jie Ren®,! William R. Wolf®,> and Xuerui Mao'"*
' Department of Mechanical Engineering, Faculty of Engineering, University of Nottingham,
Nottingham NG7 2RD, United Kingdom
2School of Mechanical Engineering, Universidade Estadual de Campinas,
Campinas, Sao Paulo 13083-860, Brazil

® (Received 1 February 2021; accepted 3 August 2021; published 17 August 2021)

Traveling-wave problems, due to their sizable Kolmogorov n-width, have brought crit-
ical challenges to conventional model reduction techniques. This study aims to provide
insights into this problem by exploiting the Radon cumulative distribution transform
(R-CDT) [Kolouri, Park, and Rohde, IEEE Trans. Image Process. 25, 920 (2016)], which
has emerged in the sector of computer vision science. The core lies in the unique property
of the nonlinear invertible R-CDT that renders both traveling and scaling components into
amplitude modulations. In contrast to the physical space, a substantial model reduction is
achieved in the R-CDT space while sustaining high accuracy. The method is parameter-free
and data-driven and lends itself to problems regardless of the dimensions or boundary
conditions. Examples start with a one-dimensional Burgers’ equation subject to nonpe-
riodic boundary conditions, where both traveling and diffusion dominate the physics. In
higher-dimensional problems, we show the model reduction of traveling Gaussian solitons.
In addition to foreseeable motions, the proposed method is capable of handling random
traveling with a nondifferentiable trajectory.

DOLI: 10.1103/PhysRevFluids.6.L.082501

I. INTRODUCTION

Model reduction of physical data, either simulated or measured, plays a significant role in
understanding the concealed mechanisms while granting plentiful downstream applications, e.g.,
data compression, model-based control, and predictions [1]. The reduction has been backed by the
fact that the inherent physics is usually sparse in the degree of freedom [2] despite the bulky size
of the generated data. However, with standard model reduction techniques, e.g., proper orthogonal
decomposition (POD) and dynamic mode decomposition (DMD), the accuracy and efficiency im-
mensely rely on the narrowness of the data’s Kolmogorov n-width, which traveling-wave problems
fail to minimize.

There has been a growing interest in advancing model reduction techniques for traveling-wave
problems. In Table I we compare some recently developed methods. Notably, one line of thought
dates back to the shifted-based template-fitting method [3], in which the data can be properly shifted
in space such that a traveling wave appears to be stationary in the transformed coordinates. To
achieve adequate model reduction and diminish the loss of accuracy, this type of method will require
one to determine the appropriate shifting matrix and introduce algorithms to minimize the error.

The optimal shift matrix recently became addressed in an optimization framework developed
by Mendible er al. [4]. This method, unsupervised traveling-wave identification with shifting and
truncation (UnTWIST), seeks the analytical representations of multiple traveling velocities by com-
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TABLE I. Comparison of recently developed dimensionality-reduction methods for traveling-wave problems.

Method Spatial dimension Boundary condition
UnTWIST [4] 1D Periodic
Shifted-POD [5] 1D, 2D Periodic
cDMD [6] 1D, 2D Periodic
Transport reversal [7] 1D but extendable Any

Data calibration [8] 1D Periodic
TSMOR [9] 1D, 2D Any

AMD [10] 1D, 2D Any
AADEIM [11] 1D, 2D, 3D Any
Radon-CDT (present method) 1D, 2D, 3D Any

bining ridge detection, spectral clustering, and sparse relaxed regularized regression. A physically
precise shift is thus made possible for each traveling wave carried by the system. Besides algorithms
recognizing the transport velocities, shifted-POD [5] provides a pioneering approach accounting for
the postshift stage, in which the data shifting introduces errors when multiple different waves are
present. Shifted-POD iteratively minimizes the residual between the data snapshot and its POD
approximation with a least-squares optimization, capable of achieving machine precision. In line
with the idea of shift-based methods, characteristic DMD (cDMD) [6] rotates the coordinate system
in both space and time. The rotating angle is determined by the group velocity of the traveling
waves, such that the physics in the new frame develops along the characteristic line, supporting a
significant singular value drop.

However, shift-based methods confront data loss unless the boundary locks up the traveling
waves with periodic or reflecting conditions. Transport reversal [7] generalized the template fitting
approach [3] by introducing a set of enhancement algorithms (e.g., greedy iteration, cutoff vectors).
The method thus manages more general problems (with varying shapes, nonperiodic boundary
conditions).

Another prospect to model traveling-wave problems is through a preconditioning operation. Data
calibration [8] makes use of an invertible mapping to calibrate the data, where the Kolmogorov n-
width becomes reduced such that the required modes are much less. The method has been developed
in the 1D framework with periodic boundary conditions. The proposed transform still requires a
priori expertise on the behavior of the physical data.

Apart from works described above, various new or improved model reduction methods have
been proposed. For example, transported snapshot model order reduction (TSMOR) [9] is specially
designed to handle problems with moving shocks (discontinuities). The transports are approximated
as a low-order polynomial expansion. Advection mode decomposition (AMD) [10] defines an
advection-mode hierarchy based on Wasserstein distance to separate the advection feature of the
flow while the residuals are decomposed with standard POD. Peherstorfer [11] proposed the adap-
tive bases and adaptive sampling discrete empirical interpolation method (AADEIM), exploiting the
temporal and spatial locality of convective structures. The local basis gets updated online following
an adaptive sampling scheme querying the full model at a few selected spatial coordinates.

While the above-reviewed research handle traveling-wave problems in various aspects, assess-
ment of crucial properties (e.g., problem dimension, boundary condition as tabulated in Table I)
shows that the model reduction towards practical applications is far from mature. In particular, a
majority of the methods are not ready for 3D problems. Some methods are target-oriented and
require essential knowledge of the physical problem to be known in advance, while shift-based
methods put restrictions on boundary conditions. In this study, we aim to boost the effort with
ideas generated in the sector of computer vision science. We propose to build reduced-order models
in the Radon cumulative distribution transformed (R-CDT) space, such that the Kolmogorov n-
width becomes significantly reduced. The method solves multidimensional problems and possesses
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flexibility with boundary conditions. It is also parameter-free and explicit; thus training as generally
required by machine-learning [12] is not necessary. The rest of the Letter begins by introducing the
methodology followed by examples with increasing dimensions.

II. METHODOLOGY

The heart of the proposed R-CDT space is the cumulative distribution transform (CDT) [13],
while the Radon transform is applied to break higher-dimensional problems into a series of 1D
signals. CDT interprets 1D signals as probability density functions. To meet this requirement, a
given input signal f(x) and a reference signal r(x), both defined on [x;, x,], are first normalized
such that

/XZ fx)dx = /Xz r(x)dx =1, with f(x) > 0, r(x) > 0. (D

The forward CDT of f(x) with respect to 7(x) is defined by the strictly increasing function f (x) that
satisfies

fx) X
f(x)dx = / r(x)dx'. 2)

X1 X1

The inverse of CDT (iCDT) is obtained by differentiating (2) with respect to x:

~ d - o o
fe) =r(f! (x))af“(x), where f~(f(x)) = x. 3)

A denormalization step is applied to bring the signal to its original range. CDT establishes a
nonlinear invertible one-to-one mapping between the signal and its transformation and, therefore,
retains all the information contained in the normalized signal. The advantage of CDT over the other
linear transforms, e.g., Fourier transform or wavelet transform, lies in its exclusive composition
properties that render traveling and scaling components into amplitude modulations. For example,
the CDT of a traveling signal f(ax — ct) with phase velocity ¢ and scaling factor « is given by
[f(x) + ct]/a. A proof is given in the Appendix.

Figure 1 demonstrates this property. The traveling wave [colored by the time traveled in Fig. 1(a)]
converts to a purely stationary signal with growing amplitude in the CDT space shown in Fig. 1(b).
In Figs. 1(c) and 1(d), we examine the correlation matrix R;; = (f(x, #;), f(x,t;)). Generally
speaking, a fast decay of eigenvalues of R warrants a narrow Kolmogorov n-width and an effective
model reduction. This decay is determined by the nonorthogonality of R, which can be viewed as a
deviation of R from the identity matrix (the identity matrix gives rise to nondecaying eigenvalues).
As shown in Figs. 1(c) and 1(d), the diagonally dominant correlation matrix in the physical
space becomes a globally distributed matrix in the CDT space [Fig. 1(d)], retaining a reduced
Kolmogorov n-width. In the present study, we define the range of function f (x) to be the same
as its domain, namely, f (x1) = xq, f (x2) = x. This confinement will help to ensure the robustness
and reversibility of CDT provided the signal is differentiable and properly normalized. From (2),
r(x) determines the shape of the transformed profile f (x). Nonetheless, it has been tested that
different choices of r(x), for example, an arbitrary snapshot of the input data at a chosen time step
t., r(x) = f(x,t,) or standard analytic functions r(x) = sin(x) + 2, lead to similar performance of
model reduction. In the examples showed below, results are obtained with 7(x) = f(x, #,). CDT, in
nature, has the same mathematical foundations as optimal transportation (OT) [14]. Here “optimal”
lies in the minimal Wasserstein distance between the signal and template, defined as

l—

X2
I, = { / [f () = x]zr(x)dx} : “
X1
reflecting the geometric connotation of CDT.
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FIG. 1. Traveling Gaussian soliton f(x, ¢) (a) and its CDT transform f (x, t) (b). Solid lines are colored
by time traveled, while the dashed line indicates the template. The pseudocolor plot of the correlation matrix
R;; = (f(x,t;), f(x,¢;)) in physical (c) and CDT (d) space.

For higher-dimensional problems, we apply the Radon transform to the signal before CDT. The
Radon transform (see [15] for a comprehensive introduction) finds its roots in multidisciplinary sci-
ences, including medical imaging, geophysics, material science, optics, etc. The inverse transform
(iRadon) represents the mathematical framework of reconstruction from probe-measured (e.g., by
x rays or microwaves) distributions. The Radon transform integrates an image or volume f along
different angles (0 < 6, ¢ < ) leading to a number of projected profiles f, defined as

2D: f(s,@)=ffj;°f(x,y)8(s—xcose—ysin@)dxdy, 5

{3D: f(s,0,¢)= f]fj;o f(x,y,2)8(s —xsinf cos¢ — ysinf sin¢p — zcos0)dxdydz, )

and § is the Dirac delta function. The Radon-CDT (R-CDT) transform f [16,17] is then obtained by
applying CDT along each projection angle:

f(s,@) 5 s f(s,@,q&) 5 K
f o', 0yds' = / Fs', 0)ds, f Fs'. 0. ¢)ds = / Hs\0,)dss (6
Kt S1 S1 S1

where 7 is the Radon transform of the template r(x, y; z). Below we show the properties of R-CDT
for 2D problems, while a similar relation holds for the 3D framework. Following the definition (5),
the Radon transform of a traveling signal g(x, y) = f(ax — b, ¢y — ¢) is

3(s,0) = f(as — abcos® — acsinb, H). (7)
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FIG. 2. Flow chart of the proposed method.

This implies that the 2D traveling v = (b, ¢) and scaling « in physical space becomes a 1D traveling
of abcos§ + ac sin 6 and scaling of « in the Radon space. From the composition properties of CDT,
the following relation thus holds in the R-CDT space:

1 . b
g(s,é‘)z—2f(s,9)+—0059+£sin9. (8)
o o o

In contrast to the appearance in physical space, g(x,y) = f(ax — b, oy — ¢), the traveling and
scaling component turns into amplitude modulations in the R-CDT space. Moreover, the application
of 1D OT combined with Radon transform has been successful in solving multidimensional optimal
transport problems with applications in image processing [18] and model reduction of BGK
equations [19] to name a few.

Figure 2 provides a work-flow summary of the proposed method. In examples presented in this
article, we build the reduced-order model (ROM) in the R-CDT space by applying a standard POD.
As both CDT and Radon transforms are invertible, the inverse transform (iRadon and iCDT) and
denormalization are then performed to reconstruct the physical space. When the data type is of
a vectorial nature, the reduced order models are built in the R-CDT space of each component
respectively.

II1. EXAMPLES
A. The 1-D problem: Viscous Burgers’ equation

The viscous Burgers’ equation is given by
Uy + Uy = Vidy,. 9

As a model equation mimicking the formation of shock waves, the solution takes the form of
diffusive waves that travel with speeds proportional to the wave height. Similar to the case described
in Mendible et al. [4], we consider v = 0.1, a Gaussian soliton, u(x, t = 0) = exp[—(x + 2)?] is
prescribed as an initial condition, and we limit the domain to —8 < x < 8 with travel-in and -out
boundary conditions. The solution is obtained for ¢ € [0, 40] with a size of 268 grid points x 201
time steps.

Figure 3(a) presents the evolution of the profile. The initial Gaussian soliton travels downstream
with decaying amplitude. By the end of the time limit, part of the wave traveled out of the domain.
Upon comparing the data [Fig. 3(b)] and its two-mode ROM [Fig. 3(c)] in the x-¢ frame, it is
evident that the ROM considerably distorted the data. On the other hand, the data in the CDT space
[Fig. 3(d)] can be methodically reduced to two modes [Fig. 3(e)]. The iCDT finally recovers the
reduced data in the physical space [Fig. 3(f)]. There is hardly a discernible difference between the
reconstructed data and its origin.

To quantify the performance of the ROM in CDT space, Fig. 4 plots the decay of singular
values o (obtained from POD and normalized by the first value o) and the error € as functions
of the number of modes. The singular value drop is much faster in the CDT space, implying
reduced Kolmogorov n-width. The error has been defined as the root-mean-square level between
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FIG. 3. Model reduction of the viscous Burgers’ equation. The evolution of the wave profiles is visualized
in panel (a), where the lines are colored by the time traveled. We show the original signal and its two-mode
ROM in the x-¢ frame in panels (b) and (c). With the proposed method, the physical signal is transformed into
the CDT space (d), where the two-mode ROM is built (e), and this is followed by an iCDT to recover the data
in physical space (f).

the reconstructed data u and ground-truth value ug:

1 N M
€= | NaF 2o 2 i 1) — o, 1) (10)

i=1 j=1
Here N and M are the numbers of grid points and time steps. Figure 4(b) indicates that the error is
essentially reduced (up to 88% less), in particular in the regimes where fewer modes are kept.

B. Higher-dimensional problems: Traveling Gaussian solitons

Here we show the application of R-CDT space for higher-dimensional problems. The tested
problems are the 2D and 3D traveling Gaussian solitons, given by

u(x,y,z, 1) = exp{—a.[x — &) — ayly — &) — a.[z — &)} (11)
(b) 0.1 . . .
b = Physical space
0.08 1 . ——CDT space
0.06F , ]
0.04F ]
0.02F %, ]
105 L L L 0 %‘H“i\:.:.'i'\jn-u... I
0 5 10 15 20 0 5 10 15 20
Modes Modes

FIG. 4. Comparison of the singular value decay (a) and error of reduced order models (b) in the physical
and CDT space.
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FIG. 5. The procedure to build a reduced-order model via R-CDT. The original signal (a) is transformed
into the R-CDT space by sequentially applying the Radon transform (b) and CDT (c). The four-mode ROM is
built in the R-CDT space (d); this is followed by iCDT (e) and iRadon to recover the physical space (f). For
comparison, the 25-mode and 50-mode ROMs built in the physical space are shown in panels (g) and (h). This
figure shows a snapshot corresponding to = 10; a video covering the whole time horizon is available in the
Supplemental Material [20].

The parameters a,, a,, a, determine the size of the soliton along each coordinate (x, y, z). The time
functions (£,(¢), §,(t), &,(¢)) control the center of the soliton at time ¢. In the examples below, we
have specified a, = a, = —0.08 for 2D and a, = a, = a, = —0.05 for 3D problems.

In the 2D example, we demonstrate the method for random traveling with a nondifferentiable
trajectory. The domain is (x,y) = [0, 100] x [0, 100]. The time functions &.(¢), §,(t), &;(¢) are
randomly generated with values between 10 and 90. We show the instantaneous signal in Fig. 5(a);
the R-CDT space is obtained by sequentially performing the Radon [Fig. 5(b)] and CDT [Fig. 5(c)]
transformation. We show the four-mode ROM in Fig. 5(d), iCDT in Fig. 5(e), and iRadon transform
in Fig. 5(f) recovering the physical space. To compare, we show the 25-mode [Fig. 5(g)] and
50-mode ROMs [Fig. 5(h)] built in the physical space. As can be seen, the random motions are
hardly modeled in the physical space even with 50 modes. We show the singular value decay and
the error in Fig. 6. For random motion problems, as can be seen here, the singular value drops
very slowly in the physical space. The error reduces almost linearly by increasing the number
of modes. Also, the proposed R-CDT space essentially outperforms the physical space for 3D
problems. Figure 7(a) visualizes a Gaussian soliton traveling uniformly in a 3D field. The singular
values in R-CDT space reach a much faster drop [Fig. 7(b)], leading to smaller errors of ROM.
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FIG. 6. Comparison of the singular value decay (a) and error of reduced order models (b) in the physical
and R-CDT space.

The reconstructed data from the standard four-mode ROM [Fig. 7(c)] are compared with their
counterpart in R-CDT space [Fig. 7(d)].

IV. DISCUSSION AND CONCLUDING REMARKS

In this Letter, we have proposed the Radon cumulative distribution transform (R-CDT) space for
the model reduction of traveling waves up to three-dimensional problems. As opposed to physical
space, the Kolmogorov n-width becomes sharply reduced in the R-CDT space. Accordingly, a
more precise but smaller reduced-order model becomes feasible. The strength of the method lies
in its parameter-free and data-driven nature. Neither recognition of the physical process (e.g.,

(a) (b) 10° —— S E T B B

-e- Physical space

' i ——R-CDT space 7

oot

109w L P B
0 5 10 15 20

Modes

o
N

=}
=

FIG. 7. The 3D traveling Gaussian soliton visualized with an isosurface of f(x,y, z,¢) = 0.05 (a). Com-
parison of the singular value drop in the physical and R-CDT space (b). The reconstructed data from four-mode
ROM built in the physical (c) and R-CDT (d) spaces, respectively. Shadows in panels (a), (c), and (d) indicate
the projection of isosurfaces onto three coordinate planes. A movie showing the temporal evolution is available
in the Supplemental Material [20].
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detect traveling waves and obtain their velocities) nor data training as usually required by machine
learning is necessary. There is no limitation on the boundary condition since a spatial/temporal
shift is not performed. The method is particularly outstanding for traveling-dominated signals even
with random trajectories. The weakness may emanate from the accuracy of the inverse transforms
(iRadon and iCDT). When noise or more complex signals dominate, the error produced by a
reduced-order model (ROM) in the R-CDT space may get amplified during the iCDT and iRadon
process. This can be overcome by improving the algorithms of inverse transforms or combining
more advanced techniques building the ROM. For a more complex data set, e.g., coupled with
turbulence, future extension of the method can focus on separating the traveling component and
building reduced-order models, respectively.

The R-CDT space shares a broad junction to the state-of-art model reduction techniques. In this
work, we have shown that even standard POD provides very efficient models in the R-CDT space.
We hope this work creates further grounds for the model reduction of traveling-wave problems.
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APPENDIX: COMPOSITION PROPERTIES OF CDT

_ Letg(x) beA an invertible, differentiable function, the CDT of f(g(x))g (x) with respect to r(x) is
fe(x) = g ' (f(x)). The proof of this property follows the definition of CDT. From (2),

fx) fe) x
Fawdu= [ flgw)g wydu = / F(u)du. (AD)

X1 X1 X1

Let g(u) = v, then ¢ (u)du = dv, and (A1) becomes

f g(fex)) x
f(u)du = / f(w)dv = / r(u)du. (A2)
Therefore,
F&) = g(fo(x) & fox) = g7 (f(x)). (A3)

From the composition property, let g(x) = ax — ct, representing a traveling wave with phase
velocity ¢ and scaling factor . Then the CDT of f(ax — ct) is given by [f(x) + ct]/«.
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