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Gortler vortices developed in laminar boundary layer experience remarkable changes
when the flow is subjected to compressibility effects. In the present study, five
Ma numbers, covering incompressible to hypersonic flows, at Ma = 0.015, 1.5, 3.0,
4.5 and 6.0 are specified to illustrate these effects. Gortler vortices in subsonic
and moderate supersonic flows (Ma = 0.015, 1.5 and 3.0) are governed by the
conventional wall-layer mode (mode W). In hypersonic flows (Ma = 4.5, 6.0), the
trapped-layer mode (mode T) becomes dominant. This difference is maintained and
intensifies downstream leading to different scenarios of secondary instabilities. The
linear and nonlinear development of Gortler vortices which are governed by dominant
modal disturbances are investigated with direct marching of the nonlinear parabolic
equations. The secondary instabilities of Gortler vortices set in when the resulting
streaks are adequately developed. They are studied with Floquet theory at multiple
streamwise locations. The secondary perturbations become unstable downstream
following the sequence of sinuous mode type I, varicose mode and sinuous mode type
II, indicating an increasing threshold amplitude. Onset conditions are determined for
these modes. The above three modes can each have the largest growth rate under the
right conditions. In the hypersonic cases, the threshold amplitude A(x) is dramatically
reduced, showing the significant impact of the thermal streaks. To investigate the
parametric effect of the spanwise wavenumber, three global wavenumbers (B = 0.5,
1.0 and 2.0 x 1073) are specified. The relationship between the dominant mode
(sinuous or varicose) and the spanwise wavenumber of Gortler vortices found in
incompressible flows (Li & Malik, J. Fluid Mech., vol. 297, 1995, pp. 77-100) is
shown to be not fully applicable in high-speed cases. The sinuous mode becomes
the most dangerous, regardless of the spanwise wavelength when Ma > 3.0. The
subharmonic type can be the most dangerous mode while the detuned type can be
neglected, although some of the sub-dominant secondary modes reach their peak
growth rates under detuned states.

Key words: absolute/convective instability, compressible boundary layers, nonlinear instability

1. Introduction

Gortler instability (Gortler 1940), the centrifugal instability of a boundary layer
over a concave wall, arises due to the imbalance between the centrifugal force and the
wall-normal pressure gradient. Streamwise-oriented, counter-rotating vortices (Gortler
vortices) are consequently generated, maintained and can be significantly intensified
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downstream promoting flow transition. Most of early studies were conducted within
the framework of incompressible flows (see reviews by Herbert 1976; Hall 1990;
Floryan 1991; Saric 1994, and the recent research by Wu, Zhao & Luo (2011)).
Gortler instabilities have been formerly studied with normal mode analysis locally
in order to obtain the so-called neutral curve (see Herbert 1976). The parallel flow
assumption was often adopted. In fact, Gortler instabilities exhibit crucial differences
compared to conventional Tollmien—Schlichting (T-S) waves. Gortler instability is
governed by parabolic equations (see Hall 1990). The initial conditions and the
non-parallel nature of the boundary layer can exert a critical influence. Therefore,
a unique neutral curve is no longer tenable (Hall 1982, 1983). The recent study
by Wu et al. (2011) has fully uncovered the different regimes of the excitation and
spatial development of Gortler vortices. Local normal mode analysis is mathematically
justified when the streamwise coordinate is large enough (where the inviscid regime
is reached). From a numerical point of view, the eigenvalue problem (EVP) is valid
only when the Gortler number G =Re,/87/R* is large. Here Re is based on the local

boundary layer length scale &} = /vix*/U%, R* is the local radius of curvature
and x* is the streamwise coordinate. The asterisk denotes any dimensional quantities
hereafter. Typically, G > 7 is satisfactory for applying the normal mode approach
(Bottaro & Luchini 1999). Discussions on the validity of the local EVP can also be
found in Day, Herbert & Saric (1990) and Goulpié, Klingmann & Bottaro (1996).
Similar restrictions exist for compressible flows with O(1) Ma number (see Hall &
Fu 1989; Spall & Malik 1989).

Gortler instability, by itself, does not lead to flow transition. Instead, low- and high-
speed streaks are produced and enhanced by persistent streamwise counter-rotating
vortices (termed Gortler vortices or Gortler rolls). Besides the Gortler flow, streaks can
form in a laminar boundary layer in other situations through the lift-up mechanism
(Ellingsen & Palm 1975; Landahl 1975, 1980). For instance, streaks develop due to
the transient growth of optimal disturbances (Hultgren & Gustavsson 1981; Andersson,
Berggren & Henningson 1999; Luchini 2000) which are not necessarily physically
realizable perturbations. Streaks can be generated by free stream turbulence (FST) and
this was analysed by Leib, Wundrow & Goldstein (1999) and Ricco & Wu (2007).
Streaks may also be generated by roughness elements of the right size (Morkovin
1990; Joslin & Grosch 1995; Tumin & Reshotko 2005). Counterparts of the above
mechanisms were also observed in compressible flows (see, for example, Hanifi,
Schmid & Henningson 1996; Tumin & Reshotko 2001, 2003; De Tullio et al. 2013).
These flows thus share many similarities. The secondary instability of streaks has been
recognized as a key factor leading the boundary layer to transition. The subsequent
breakdown process is observed to proceed rather rapidly (Swearingen & Blackwelder
1987). Studying the secondary instability is thus important to understand the physical
mechanism of the transition process. A number of numerical investigations (see Hall &
Horseman 1991; Sabry & Liu 1991; Yu & Liu 1991, 1994; Liu & Domaradzki 1993;
Li & Malik 1995; Park & Huerre 1995; Bottaro & Klingmann 1996) were carried
out using parameters taken from experiment (Swearingen & Blackwelder 1987).
Identifying the most dangerous secondary mode is of fundamental importance as it
determines both the scenario and location of transition. For incompressible Gortler
flow, the sinuous and varicose modes are found (Hall & Horseman 1991; Yu & Liu
1991) and analysed with energy balancing mechanisms (Liu & Domaradzki 1993; Yu
& Liu 1994; Park & Huerre 1995). Schrader, Brandt & Zaki (2011) performed the
first spatial DNS for a Gortler flow including the experimental conditions of Tandiono,
Winoto & Shah (2008), Tandiono, Winoto & Shah (2009) for incompressible flows.
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In the breakdown process reported, both the sinuous and varicose modes were
observed. It was found that the sinuous mode appeared first and required a lower
amplitude of the streak (see Bottaro & Klingmann 1996; Andersson et al. 2001)
while varicose modes were stronger for large wavelengths of Gortler vortices (Li &
Malik 1995). This was later verified in an experiment for the secondary instability
of streaks along a flat plate (Asai, Minagawa & Nishioka 2002). In the study
of Li & Malik (1995), the subharmonic type was also highlighted as they had
comparable growth rate to the fundamental counterparts. Among these studies, a
particular sinuous mode had been missed out. This mode is sinuous in nature but its
disturbances are distributed near the stem of the mushroom (see Ren & Fu 20145,
p. 560, figure 6d). In the wake of an isolated roughness element, this type of mode
(which is not the most dangerous) was also reported (see the Bi-global analysis of
De Tullio et al. 2013). In the current study, we shall show this mode can have the
largest growth rate and is therefore responsible for the sinuous breakdown under
certain conditions.

Concerning the receptivity problem (see Hall 1990; Bassom & Seddougui 1995,
for early reviews), Gortler vortices can be excited through surface roughness (Denier,
Hall & Seddougui 1991; Bassom & Hall 1994; Luchini & Bottaro 1998; Schrader
et al. 2011) or/and FST (Luchini & Bottaro 1998; Schrader et al. 2011; Wu et al.
2011). A recent study indicates that zero or low-frequency free stream vortices most
effectively excite the Gortler vortices (Schrader et al. 2011). In previous DNS studies,
(see Schrader et al. 2011, for example), FST and the inlet condition were often
represented by continuous spectrum of the O-S/Squire equations, such a practice
was questioned by Dong & Wu (2013), who showed that continuous modes do not
represent FST or its entrainment into the boundary layer. More recently, Sescu &
Thompson (2015) revealed the influence of the roughness geometry on the excitation,
development and secondary instability of Gortler vortices.

For hypersonic Gortler flows, the most significant flow feature is the existence of
the temperature adjustment layer near the upper edge of the boundary layer, which
gives rise to the trapped-layer mode (mode T disturbances rest in the layer near the
upper edge of boundary layer) (Fu & Hall 1992, 1993). This mode becomes the
most dangerous when the Ma number is larger than a critical value, e.g. Ma > 4,
approximately. The mode T can also intersect with the conventional wall-layer mode
(mode W disturbances exist in the layer close to the wall) at very large Re numbers.
The crossover of the growth rate between the two modes has been studied with the
asymptotic (Dando & Seddougui 1993) and the local & marching methods (Ren &
Fu 2014a). Recently, Ren & Fu (2015) studied the discrete spectrum in a Ma =4.5
flow, highlighting the possible synchronizations for Gortler modes.

Experimental studies of Gortler vortices in high-speed flows are scarce. The Ma="7
experiment by Luca et al. (1993) demonstrated the generation of Gortler vortices from
spanwise periodic temperature variations. The wavelength was found to maintain a
constant value along the streamwise direction. However, neither the base flow nor
perturbation quantities were reported in the experiment. Other experiments were
conducted over a compression ramp (de la Chevalerie et al. 1997; Schrijer 2010). Due
to the concave curvature of the streamlines in the region of the flow separation, the
Gortler mechanism is engaged. However, properly handling the Gortler instability is
of vital importance in the design of high-speed wind tunnel nozzles (Chen, Wilkinson
& Beckwith 1993; Schneider 1998, 2008).

Discussions on the secondary instability of Gortler vortices in compressible flows
can be found in Fu & Hall (1992), Whang & Zhong (2001) and Li et al. (2010).
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In the numerical study by Whang & Zhong (2001), a Ma =15 flow with a concave
surface was simulated with DNS. The varicose mode which develops into the
horseshoe vortex was found to be dominant over the sinuous mode. In the Ma =6
study by Li et al. (2010), however, the most dangerous mode was demonstrated to
be the sinuous mode. Besides the secondary instability of Gortler vortices, the other
routes towards transition, e.g. the Gortler—-Mack mode interactions, were also explored
(Li et al. 2010).

Taking a broad view of existing studies in compressible Gortler flows, however, we
note that many aspects related to the secondary instabilities of Gortler vortices remain
unclear. For example, what is the effect of increasing Ma number on the secondary
instability with the mode T being the governing mode? How is the threshold amplitude
(Andersson et al. 2001) influenced by the Mach number? Is the relationship between
the growth rate of the varicose/sinuous mode and the basic wavelength of Gortler
vortices (Li & Malik 1995) still valid in compressible flows? Should the subharmonic
and detuned secondary instabilities be responsible for the transition process? The
present study attempts to investigate, comprehensively the secondary instabilities of
compressible Gortler vortices in order to answer these questions.

In § 2, the mathematical formulation of the secondary instability and the definition
of the global parameters are provided. The linear and nonlinear spatial development
of Gortler vortices are discussed in § 3. Results for the fundamental, subharmonic and
detuned secondary instabilities of Gortler vortices are presented and discussed in § 4.
Further discussions are provided and the present study is concluded with §5.

2. Formulation of the problem

In the coordinates defined in figure 1, the flow is governed by the compressible
Navier-Stokes (N-S) equations. Axes x, y and z are along streamwise, wall-normal
and spanwise directions, respectively. The corresponding Lamé coefficients are
hy =1+ ky, hh = h; = 1 with k representing the streamwise curvature (negative).
The coordinates are scaled with the boundary layer length scale &; at the inlet of the
flow, e.g. x =x*/8; = x*//vix;/U%. All flow quantities are scaled with their free
stream values except the pressure which is scaled by pZ (U%)*. The dimensionless
form of the Navier—Stokes equations are thus characterized with the dimensionless
numbers:

* * Ok * * *
Reg= PUx% ppo Ux o p G 2.1a—c)

Wao VYRGTS (8

The disturbance § = (p, it, 9, w, T)T is governed by nonlinear stability equations.
The governing equation is derived from compressible Navier—Stokes equations by
introducing disturbances to the laminar flow q(x, y, z, ©) = qo(x, ¥) + q(x, y, z, ) and
subtracting the basic flow relations. The disturbances are then expressed with Fourier
series

M N
Gr.y. 2. 0= > > §,,(x.y) exp(inpz — imot). 2.2)
m=—M n=—N
In compact form, the stability equations can be written as
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FIGURE 1. (Colour online) Sketch of the counter-rotating Gortler vortices encountered
on a slightly concave wall. The orthogonal curvilinear coordinates x, y and z denote
streamwise, wall-normal and spanwise directions. Velocity components u, v and w are
defined in the directions shown. The near wall area (dashed lines) indicates the undisturbed
region due to the dominance of trapped-layer modes (mode T) in hypersonic boundary
layers.

The operators %y, %, ..., %5 in (2.3) are functions of Rey, Ma, Pr, nf8, mw, k and
basic flows (see appendix A for detailed expressions of these operators). The vector
N, stands for nonlinear terms. Sutherland’s law and Stoke’s hypothesis are applied
for closure of the N-S equations. The fluid is assumed to be calorically perfect gas
with Pr number being constant. Typically, Pr = 0.72 is specified in this study. An
adiabatic wall is considered with a stagnation temperature of 77 =300 K. It can be
inferred from (2.3) that the four leading curvature terms are ,ok/h1 in %4y(1,3), puk/h
in %(2,3), —u’k/h; in %,(3,1) and —2puk/h; in %,(3,2). The curvature is coupled
with the basic flows and acts on the zeroth-order derivative operator £,. The basic
flows here are specified as the self-similar solution of the compressible boundary layer.

Going through the stability equations (2.3), one observes that the Ma number,
representing the compressibility effect, plays an important role in the operator £;. To
evaluate the Ma number effect, the two-norm of the operators in (2.3) are plotted in
figure 2 with representative parameters. The two-norm ||.%|l> = 0., (%£;) corresponds
to the largest singular value of the matrix and measures the amplitude of the operator.
In figure 2, we have Re, =200, local curvature k= —2 x 10~*, spanwise wavenumber
B =0.2, angular frequency w =0 and m=n=1. The zeroth and first-order derivative
terms %, £ and %, are of the order of O(1). As shown in the figure, when
Ma is increased, || %2, || Zill> and || %], decrease first but then increase near the
wall. Meanwhile, a second peak is observed near the edge of the boundary layer.
The operators then act as constants outside the boundary layer. The second-order
derivative operators %5, £, and %5 have simple expressions as can be seen in
appendix A and are derived from the viscous terms of the N-S equations. The order
of these operators are of O(1/Re), small enough to be neglected except for the term
which is related to %5 for the second-derivative in the wall-normal direction. This is
consistent with the fact that Gortler vortices develop along the streamwise direction
as slowly as the boundary layer does. The stability equations (2.3), hence, can be
parabolized by dropping %5 and %,.

The nonlinear development of Gortler vortices are integrated up to a (quasi-)
saturated status. The fully developed Gortler vortices then act as the base flow for
secondary stability analysis. The readers may refer to Li & Malik (1995), Li et al.
(2014), Ren & Fu (2014a) for details of the nonlinear marching of the basic states
and validations.



Secondary instabilities of Gortler vortices 393

(a) 05 b) 25
0.4 2.0
= = —Q—
S 0.3 - !
y 03] N 57
0.2 1o f)¢
0.1 0.5
0 20 40 0 20 40
(c) 25
— Ma=0
Ma=1.5
o 20 \-—‘— Ma=3.0
= S Ma=45
N LSt |— ma=60
1.0 _(’).‘Axﬁ
N
0.5 —
0 20 40 0 20 40
y y

FIGURE 2. (Colour online) Two-norm of the operators || %2, ||Z11l2, |.|l2 and | %512
of the stability equations (2.3) as a function of the wall-normal coordinate. Re, = 200,
k=-2x10"* =02, =0, m=n=1, Ma=0.015, 1.5, 3.0, 4.5 and 6.0. The solid
circles show the upper edge of the boundary layer defined as 99.99 % of the freestream
velocity.

In the methodology of the linear secondary instability (Herbert 1988; Schmid &
Henningson 2001), the stability analysis is performed typically in a y—z cross-section
(so-called Bi-global). The disturbances, therefore, are assumed to be inhomogeneous in
the wall-normal and spanwise direction but periodic in time and streamwise direction,

1.€.
o0

és(X, ¥, 2, 1) = eV Tp@sitiax Z am(y)eimﬂz

m=—00 (2.4)
i
5
Here, g, = (0;, Uy, Uy, Wy, TX)T is the secondary disturbance on Gortler vortices and f is
the spanwise wavenumber of the primary Gortler mode. The subscript s indicates the
quantities with respect to secondary instabilities. In the temporal analysis considered
here, the streamwise wavenumber o is specified and the angular frequency w; is
the eigenvalue to be determined. The Floquet parameter y decides the type of the
secondary instability and y;/8 €0, 0.5]. y;/8 =0 produces the fundamental, y;/8=0.5
the subharmonic and the other values result in detuned types. The periodic base flow
at a specified streamwise location is written as

0<y<

00, D=3+ Y u()e"". 2.5)

n=—00

Substituting (2.4) and (2.5) into the N-S equations, the secondary instability equation
finally reduces to the EVP, i.e.

L0 =w,206. (2.6)
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The EVP is numerically solved with the Chebyshev and Fourier collocation methods
in the y and z directions, respectively. The dimension of the sparse matrix £ and #
is (Ny x N;) with Ny =5N, - N,. Here N, is the number of points in the wall-normal
direction and N, is the number of the Fourler components. The Arnoldi method is
applied for shooting the targeted eigenvalues.

Before the discussion of results, the global stability parameters are defined first.
They are also recommended for future studies of the stability problem. In conventional
stability analysis, the concept of the local normal mode analysis assumes a simple
wave-like disturbance g(x, y, z, ) = g(y) expli(ax + Bz — wt)] (Mack 1975), thus, the
wavenumber o, f and the angular frequency w are introduced. However, these local
variables are scaled with the boundary layer thickness which is a variable itself. This
is an inconvenience when the marching or global method is applied. As a result, the
dimensionless frequency F' is often employed, e.g. in Ma & Zhong (2003)

F_a)*v;‘o_ w 27
- U2 Re '

Here Re = /px Ux x*/u*, represents the local Reynolds number which scales with

/x*. This will be used in the present study as a measure of the streamwise coordinate.
The dimensionless frequency F corresponds to a physical frequency free from the
streamwise coordinate. In this study, F' is termed the global frequency. Similarly, the
global wavenumber B and the global streamwise curvature K are also defined as

2 *
B W =£, (2.8)
UrA*  Re
* k
K=——too % (2.9)
U*R* Re

B and K thus reflect the physical wavelength A* and radius of curvature R*. They are
related to the wavelength parameter of Gortler vortices (see Saric 1994, for example)

U*/l* A* / 231
\/; ( K). (2.10)

3. Spatial development of Gortler vortices

3.1. Gortler modes from the local normal mode analysis

As the steady state for secondary instabilities to appear the linear and nonlinear
development of Gortler vortices are discussed in this section. To investigate the effect
of the Ma number on the secondary instability of Gortler vortices, five groups of
cases are studies here with Ma = 0.015, 1.5, 3.0, 4.5 and 6.0. The Ma = 0.015
case represents the incompressible flow and coincides with the experimental
conditions of Swearingen & Blackwelder (1987). The Ma = 1.5 and 3.0 cases
are for moderate supersonic flows, while Ma = 4.5 and 6.0 are for hypersonic
flows. For each Ma number, a number of cases with different combinations of
wavenumbers B and Floquet parameters y are considered to study the effect of the
spanwise wavelength and the tuning parameter. These cases share the following flow
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MO M1 M2 M3 M4
Ma =0.015 Ma=1.5 Ma=3.0 Ma=4.5 Ma=6.0
F S D
vi/B=0 vi/B=0.5 vi/B € (0,0.5)
Bl B2 B3

B=05x10"7 B=10x103 B=20x10"?

TABLE 1. Parameters of the flow cases in the current study. The five Mach numbers
increase linearly from incompressible to hypersonic conditions. The three global spanwise
wavenumbers cover the (quasi-) most amplified Gortler modes in all the five Mach
numbers. In the incompressible case, these wavenumbers coincide with the wavelengths
36, 18 and 9 mm considered in Li & Malik (1995).

parameters: global curvature K = —107°, Reynolds number Re € [200, 1000] and thus
Gortler number G € [2.8, 31.6]. The global curvature is chosen to represent the most
commonly engaged Gortler flows. Recall that in the experiments of Swearingen &
Blackwelder (1987) and Mitsudharmadi, Winoto & Shah (2005), K = —0.94 x 10~
and —2.5 x 107, respectively. The flow parameters of all the cases are listed in
table 1. For example, the case M3-S-B2 indicates the flow with Mach number
Ma = 4.5, Floquet parameter y;/8 = 0.5 (subharmonic) and global wavenumber
B=1.0x 1073,

In figure 3, the local growth rate of the primary Gortler modes as a function of
Re is given for the supersonic cases. Only the most amplified mode is plotted here
apart from the other sub-dominant Gortler modes. The local normal mode analysis
is performed within Re € [200, 1000] located in the post-neutral regime. The growth
rate for Re > 400 (i.e. G > 8) can be accurately predicted with the local approach
as discussed in § 1. Unlike the Mack mode, which grows only when the mode F
synchronizes with the mode S, the unstable bands of Gortler vortices are much larger
(see for example Ren & Fu 2015). They continue to grow downstream until the right-
branch regime is reached (Wu et al. 2011). As shown in figure 3, the increase in the
Mach number generally decreases the growth rate of Gortler modes, therefore having
a stabilizing effect on the primary instability. In addition to the cases B1, B2 and
B3, the growth rate of another five wavenumbers are plotted with dashed lines. These
wavenumbers are uniformly distributed within the range of B =1[0.25 x 1073, 2.00 x
1073]. Integrating the growth rate within Re € [400, 1000] (not shown in the figure),
the most dangerous wavenumbers are identified as B = 1.25 x 10~ for case MI,
B =0.75 x 107* for M2 and B = 0.50 x 1073 for M3 and M4. The above result
shows that when the Ma number increases, the most dangerous wavenumber decreases.
As can be inferred from figure 3, the specified three wavenumbers B1 =0.5 x 1073,
B2=1.0 x 10~ and B3 =2.0 x 10~* cover the most amplified and also the least
amplified Gortler vortices within the eight wavenumbers, thus ensuring that the cases
listed in table 1 are representative.

As stated in § 1, the mode T has the largest growth rate in hypersonic cases except
for very large Re numbers. Figure 4 shows the modal profiles |¢'| |p’| and |T’| for
case M1, M2, M3 and M4 at Re =400 and 1000. The disturbance components v’
and w' (not shown in the figure) have much smaller amplitudes. Nevertheless, they
take the leading roles in the lift-up mechanism. The boundary layer edge defined as
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FIGURE 3. (Colour online) Local growth rate of the most amplified Gortler mode
predicted with normal mode analysis. Results for eight global spanwise wavenumbers are
provided (see line labels). Re € [200, 1000]. (a) Ma = 1.5, (b) Ma = 3.0, (¢) Ma =4.5,
(d) Ma=56.0.

99.99% U, is also plotted in the figure. The four cases have the same wavenumber,
B2, but the Ma numbers are different. The disturbances are scaled so that the
streamwise velocity disturbance |u'| has unit maximum value. With the increase in
the Ma number, amplitudes of the disturbance components |p’| and |T’| become larger.
The dominant component, therefore, is the temperature disturbance when Ma > 3. In
moderate supersonic cases (Ma = 1.5, 3.0), the profiles of the disturbances attach to
the boundary layer wall while for hypersonic cases (Ma = 4.5, 6.0), all disturbance
components detach from the wall. It is evident that the disturbances for Ma=1.5 and
Ma=3.0 belong to the mode W while mode T governs the disturbances for Ma =4.5
and Ma = 6.0 cases. The disturbances of the mode T and mode W are located within
the boundary layer. The two types of Gortler mode both are steady and have zero
streamwise wavenumber, i.e. «, = 0. The differences between the two modes are
reflected in the Reynolds number effect also. By increasing the Reynolds number, the
modal shapes tend to become more mature. As a result, the disturbances of the mode
W move towards the wall while those for mode T move in the reverse direction
when the profiles at Re = 400 and Re = 1000 are compared. It should be stressed
that the crossover of the two modes (Dando & Seddougui 1993; Ren & Fu 2014q)
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FIGURE 4. (Colour online) Disturbance profiles of |u/|, |p’| and |T’| at Re =400 (thin
lines) and Re = 1000 (thick lines) with the global spanwise wavenumber B = 1.0 x 1073,
The |u'|-amplitude is normalized to maintain unit maximum value. The vertical lines
show the upper edge of the boundary layer defined as 99.99 % of the freestream velocity.
(@) Ma=1.5, (b) Ma=3.0, (¢c) Ma=4.5, (d) Ma=6.0.

does not occur in the present study as the Re number is not large enough. Therefore,
the linear spatial development of Gortler vortices is governed by the most amplified
mode, say, the behaviour of a single mode.

3.2. Spatial development of Gortler vortices

With an understanding of the modal growth, the nonlinear development of Gortler
vortices for the five groups of Mach numbers and three wavenumbers are performed.
The initial disturbance is introduced into the boundary layer at Re = 200 with
disturbance profiles from the normal mode analysis. The marching reaches a saturated
status due to the nonlinear effects for incompressible and moderate compressible flows.
In hypersonic flow, the saturation state hardly exists. This will be explained later in
this section. The position of the starting point selected here causes no difference
to the resulting Gortler vortices (see the discussions by Lee & Liu 1992; Girgis
& Liu 2006). The initial amplitude of the disturbances (based on the streamwise
velocity disturbance) are specified as A(u) =2 x 1073 to allow sufficient linear growth
(see (3.1)). The development of Gortler vortices with spanwise wavenumber B2 in
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FIGURE 5. (Colour online) Nonlinear development of Gortler vortices and the formation
of low- and high-speed streaks. Contour plots of the streamwise velocity are within
Re € [520, 720]. Contour levels = 0.1, 0.2, ..., 0.9. Global spanwise wavenumber B2 =
1.0 x 1073, (@) Ma=1.5, (b) Ma=3.0, (c) Ma=4.5, (d) Ma=06.0.

the nonlinear regime for cases M1, M2, M3 and M4 are provided in figure 5. The
contours of the streamwise velocity u are at the levels of 0.1,0.2,...,0.9. Ten slices
distributed within Re € [520, 720] are plotted to illustrate the rise and development
of the mushrooms. The disturbances begin to alter the profiles of the boundary layer
visibly at Re ~ 520, where the amplitude of the disturbances reaches 5 % of the base
flow. The contours of the density and the temperature are analogous to the streamwise
velocity in figure 5.

It is seen in figure 5 that the counter-rotating streamwise vortices carry the
fluids with high momentum and low temperature towards the wall and fluids with
low momentum and high temperature to the reverse direction exerting the lift up
mechanism. The boundary layer streaks, and also the thermal streaks (Ricco & Wu
2007), form as a result. One can observe the changes in the boundary layer due to
the increase in the Ma number:

(i) The boundary layer thickness varies with Ma parabolically as 8o9 o Ma®. This
can be identified from the first slice of the contours in each panel in figure 5
where the boundary layer flow starts to receive perceptible increments from the
disturbances.

(i) Due to the reduction of the growth rate of Gortler modes as Ma number
increases, the lift up effect weakens, hampering the formation of the mushrooms.
Scrutinizing the two hypersonic cases shown in figure 5(c,d), no mushroom is
yet matured. Thus, a bell shape best describes this structure in comparison with
the conventional mushroom shape. This phenomenon was first reported by Li
et al. (2010).

(iii)) The moderate supersonic (Ma = 1.5 and 3.0) and hypersonic (Ma =4.5 and 6.0)
cases are governed by the mode W and mode T, respectively. As a result,
the near-wall flows remain uninfluenced, especially in the Ma = 6.0 case.
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FIGURE 6. Development of the amplitude of the disturbances’ Fourier components g,
01, ..., P10 as a function of the Re number. The number labelled indicates the wavenumber
n of the harmonics as defined in (2.2). () Ma = 1.5, (b) Ma =3.0, (c) Ma =4.5, (d)
Ma =6.0.

The thickness of the boundary layer is almost unchanged in the interval of
the bells for the Ma = 6.0 case, whereas in the other cases the streamwise
vortices take the high-speed flows towards the wall, hence reducing the thickness
of the boundary layer. An unperturbed area where the boundary layer is not
affected by the disturbances thus forms in hypersonic cases (also sketched in
figure 1).

Figure 6 shows the nonlinear development of the amplitude of the Fourier
components (based on density disturbances p). The crossover between the base
flow correction mode (mode 0) and the fundamental mode (mode 1) occurs in all the
cases considered here. The start of the saturation is characterized by the flattening
of the disturbance amplitude that clearly occurs for the cases M1 and M2. In the
region of saturation, the rapid growth of the amplitudes slows down and is replaced
with the redistribution of the disturbance energy among harmonics. In fact, in the
non-parallel boundary layer flows which slowly develop in the streamwise direction,
a definite saturation may never exist. Comparing the four cases shown in figure 6,
the saturation amplitude is not much influenced by the Ma number.
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Following the definition introduced by Andersson et al. (2001), the streak amplitude
based on the streamwise velocity disturbance is

A(m)=0.5 (max(ﬁ) — min(ﬁ)) . (3.1
.z »z
For compressible flows, we also introduce the thermal streak amplitude
A(T)=0.5 <max(T) - min(T)) , (3.2)
.z .z

as a measure of the gradient. The amplitude of the gradient is defined as (see Bottaro
& Klingmann 1996)

A(uy) =max [(U +w),l,  A(u;) =max |(U+ )|
.2 ¥z

A(T,) =max (T +T),|, A(T,) =max |(T+T).|. (3.3)
ysZ .z

In figure 7(a,b), the streak amplitude A(x) and A(T) are plotted as functions of Re.
The global wavenumber B2 = 1.0 x 1073, For the two moderate supersonic cases
M1 and M2, A(u) increase first and both reach a maximum value around 0.64. The
amplitudes A(u) and A(T) start to decrease in the region of saturation. For the two
hypersonic cases M3 and M4, A(u) keeps increasing to 0.54 and 0.24, respectively.
A general trend is that the amplitude A(u) decreases while A(T) increases when the
Mach number is increased. It is worth noting that A(7) finally reaches 2.2 and 2.5 in
M3 and M4 which becomes more than twice that of the base flow. As a result, the
nonlinear terms become large enough to require an increasing number of iterations
at each station. This creates obstacles for the governing parabolic stability equations
and also for the steady development of Gortler vortices in high-speed flows. This is
the reason why nonlinear marching becomes difficult to maintain and saturation hardly
exists in hypersonic cases. One can improve the situation by increasing the number
of harmonics included and reducing the step size Ax thus diminishing the differences
between two steps. The marching is stopped when the mushrooms or bells (based on
A(u) and A(T)) are fully or over developed.

Figure 7(c,d) show the amplitude of the gradients for u,, u, and T, T, defined
in (3.3). The lines with and without circle symbols indicate the y- and z-gradient
respectively. The y-gradient naturally exists in the undisturbed boundary and thus is
not zero when the initial disturbance is introduced. Along with the development of
the streak, both A(u,) and A(T)) first decrease and then increase. In the cases M1 and
M2, the saturation finally prevents the rapid growth of this gradient. The z-gradients
are generally related to the sinuous secondary mode. In all the cases considered here,
they keep growing until the saturation (if it exists) occurs.

On the whole, the Ma number greatly affects the spatial development of Gortler
vortices. In addition to the preceding analysis, the increase in the Mach number
also brings the following changes to the primary steady states: (i) the temperature
disturbance as well as the related gradients become the dominant components; and
(i1) saturation of the disturbance hardly exists in hypersonic cases due to the dramatic
increase of the temperature disturbances. It can be expected that the secondary
instability shall experience a very different scenario depending on the Ma number of
the flow.
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FIGURE 7. (Colour online) Spatial development of the streaks indicated with streak
amplitude and gradient amplitude. Re € [200, 800]; B2 = 1.0 x 1073; Ma = 1.5, 3.0,
4.5 and 6.0. (a) Streak amplitude A(u) based on streamwise velocity disturbance i.
(b) Streak amplitude A(T) based on temperature disturbance T. (¢) Streamwise velocity
gradient amplitude A(u,) (lines without symbols) and A(u,) (with solid circle symbols).
(d) Temperature gradient amplitude A(7,) (lines without symbols) and A(T,) (with solid
circle symbols).

4. The secondary instability
4.1. Sinuous and varicose modes

The streamwise elongated streaks are receptive to the secondary disturbances when
the amplitude is large enough and the secondary instability reaches the maximum
growth rate near the saturation of the primary disturbances. To better understand
the development of the secondary disturbances, a secondary instability analysis is
performed for the fundamental, subharmonic and detuned cases at multiple locations.
In this subsection, the secondary perturbations are considered at Re = 700.

The secondary instabilities which give rise to the high-frequency unsteady
disturbances are regarded as the elementary factor leading to the flow transition.
Due to the periodicity of Gortler vortices in the spanwise direction, the secondary
instability modes can be divided into odd and even modes which determine the
symmetry or antisymmetry of the disturbances. For example, for the odd modes, the
secondary disturbances py, i, U, and T, are antisymmetric while w; is symmetric
in the y—z cross section. The even modes have inverse symmetry as do the odd
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FIGURE 8. (Colour online) (@) Growth rate of the fundamental secondary disturbances as
a function of the streamwise wavenumber «, at Re =700. Case M1-F-B1, M1-F-B2 and
MI1-F-B3 are shown. Ma=1.5, y; =0, B=0.5, 1.0 and 2.0 x 1073. The labels ‘Mode
1,2, ... indicate the ranking of maximum growth rate. The most amplified four modes
(if they exist) are provided. (b) Dimensionless frequency F (see (2.7)). The dominant
frequencies F =2.0, 10.0 and 12.4 x 10~ (belong to the largest growth rates) are circled
for the three cases. (c) Phase velocity ¢ of the corresponding disturbances. The dominant
phase velocity ¢=0.653, 0.778 and 0.814 are circled.

modes. The odd and even modes are essentially responsible for the sinuous and
varicose motions of the transition process. Therefore, in this study, they are termed
the sinuous and varicose modes respectively.

Generally speaking, a series of varicose and sinuous modes are supported by the
fully developed Gortler flows. These modes become amplified within a limited range
of wavenumbers or frequencies. Figure 8(a) shows the most amplified four modes
(if they exist) for the cases M1-F-B1, M1-F-B2 and M1-F-B3 at Re = 700. These
secondary modes are labelled ‘mode 1, mode 2 ... according to their maximum
growth rates. As shown in the figure, there is an optimal wavenumber «; ,, for each
of the secondary modes. The growth rate decreases when the wavenumber deviates
from this value. For the case Bl, the growing disturbances occur in a narrower
band of the streamwise wavenumbers, i.e. ¢« € (0, 0.2) compared to B2 and B3 in
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which «; € (0, 0.6). By examining the peak growth rates of the three cases, the B2
case has the maximum growth rate followed by B3 and B1. Recalling the primary
instability shown in figure 3(a), the primary instability observes the same rank as
B2 > B3 > B1. These results show that a larger integrated primary growth, and
thus a higher amplitude level, produces the corresponding priority for the secondary
instability thus leading to an earlier flow transition. It shall be noticed that some
of the modes reach their peak growth rate at an obviously larger wavenumber o
e.g. mode 3 for case B2 and mode 2 for case B3. In fact, they are of the sinuous
type but have the disturbances concentrated in the stem of the mushroom, which will
be highlighted in this study. To distinguish them, they are termed the sinuous mode
type II here while the convectional sinuous modes are referred to as sinuous mode
type L.

The frequency, to some extent, distinguishes the disturbance types. The dimension-
less frequency F of the T-S mode and the Mack second mode (Mack 1975, 1984),
or the mode F/S in the framework suggested by Federov & Tumin (2011), has a
typical value of O(10~*) (see, for example, Ma & Zhong 2003). Figure 8(b) shows the
frequencies of the current secondary disturbances. They are virtually of the order of
O(107?) and often termed high-frequency. The varicose and sinuous mode type I with
the same spanwise wavenumber B (mode 1, 2, 3 for case B1; mode 1, 2, 4 for B2 and
mode 1, 3, 4 for B3) have a very similar frequency while it is smaller for the sinuous
mode type II (mode 3 for B2 and mode 2 for B3). The most dangerous frequencies
(belonging to the largest growth rate) are F = 2.0, 10.0 and 12.4 x 10~* for the
three cases. As shown in figure 8(b), the frequencies increase almost linearly with the
wavenumber «, showing the phase velocities weakly dependent on the wavenumber
(see figure 8c). The critical phase velocity at the maximum growth rate reads ¢ =
0.653, 0.778 and 0.814, respectively for the three cases. The sinuous mode type II
has an obviously lower phase velocity.

The contours of the streamwise velocity disturbances (absolute value, solid lines)
together with the base flow (dashed lines) are plotted in figure 9 at the wavenumber
;0 With which they experience the peak growth rates. The most amplified three
modes are provided. Both the base flow and the disturbances are normalized to have
unit maximum values. The most dangerous mode (mode 1 as indicated in figure 8) for
the three wavelengths B1, B2 and B3 are sinuous type I, varicose and sinuous type I,
respectively.

4.2. Mach number and wavenumber effects

At the same location at Re = 700, when the Ma number is increased, the most
dangerous modes are all sinuous modes, as can be inferred from figure 10 showing
the most dangerous modes for cases M2, M3 and M4. The streamwise wavenumber
corresponds to the optimal value «,, of each case. Scrutinizing cases M2-F-Bl,
M3-F-B1 and M4-F-B1, the Ma number effect is manifested by the secondary
disturbances: (i) as discussed in the previous section, the transformation from mode
W to mode T uplifts the streaks leaving the near-wall region unperturbed. In other
words, the near-wall boundary layer flow is not much affected by Gortler vortices in
hypersonic flows. The spanwise shear in the base flow, therefore, concentrates near
the upper part of the boundary layer. The sinuous disturbances, consequently, shift
towards the upper edge of the boundary layer as the Ma number increases; and (ii)
there are three peak values i, for case M2-F-B1 but two for M3-F-B1 and one for
M4-F-B1. This is due to the reduction in the growth rate of the primary instability
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FIGURE 9. Fundamental secondary disturbances of the most amplified three modes
for case M1-F-B1 (a,d,g), M1-F-B2 (b,e,h) and MI1-F-B3 (cf,i) at Re = 700 ((a,c,e,g)
sinuous type I, (f) sinuous type II, (b,d,i) varicose). Contours of the streamwise velocity
disturbance |u,(y, z)| (solid lines) and the base flows (dashed lines). Contour levels =
0.1,0.2,...,0.9. Disturbances subject to the wavenumbers ¢, which are the optimal values
of ay,, at peak growth rates as labelled in each panel. ‘Mode 1, Mode 2 and Mode 3’
correspond to the ranking shown in figure 8. (a) o®*=0.06, (b) ¢’ =0.25, (¢) «*=0.32,
(d) a*=0.10, (e) «*=0.25, (f) «*=0.42, (g) «*=0.06, (h) «*=0.43, (i) «*=0.20.

which leads to the retrogress of the mushroom. The distortion of the base flow is
thus weakened. Furthermore, in M3-F-B3 and M4-F-B3, there are no unstable modes
as the streak is too weak.

The above analysis is based on a single location corresponding to Re = 700. To
highlight the effect of Mach number Ma and wavenumber B, results of multiple
streamwise locations are summarized in figure 11. Here, the growth rates at seven
streamwise locations in the (quasi-) saturated regime are given for cases MO, M1,
M2 and M3. The three most dangerous modes, i.e. the varicose mode, sinuous mode
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FIGURE 10. Secondary disturbances of the most amplified modes for case M2 (a—c), M3
(d-f) and M4 (g—i) with wavenumbers B1 (a,d,g), B2 (b,e,h) and B3 (cf,i) at Re =700.
Contours of the streamwise velocity disturbance |it;(y, z)| (solid lines) and the base flow
(dashed lines). Contour levels =0.1,0.2, ..., 0.9. Disturbances subject to wavenumbers o
which are the optimal values «;,, at peak growth rates.

type I and sinuous mode type II appear in MO, M1 and M2. In case M3, only the
sinuous mode type I exists.

Although high-speed flows are of main interest here, discussions are first given for
case MO. Recalling the incompressible study by Li & Malik (1995), these authors
showed that the even mode dominated for large wavelengths while the odd mode was
more severe for small wavelengths. This conclusion results from the stability analysis
up to x = 1.0 m. Within this range, the 18 mm (B2) and 36 mm (B1) wavelength
cases had larger growth rates with the even mode while the most dangerous mode in
the 9 mm (B3) case was the odd mode. In the experiment (the spanwise wavelength
~18 mm, case B2), both sinuous and varicose motions arose during the transition
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FIGURE 11. (Colour online) Growth rates of the secondary disturbances for
incompressible, moderate supersonic and hypersonic cases. (@) MO, (b) M1, (c) M2
and (d) M3. Seven streamwise coordinates with Re = 700, 713, 726, 738, 750, 762 and
773 are specified for cases MO, M1 and M2 while Re = 647, 660, 674, 687, 700, 713
and 725 for case M3. The growth rate is given by the upper bound of the bar with a
certain colour. The red, dark blue and light blue bars denote the varicose mode, sinuous
mode type I and sinuous mode type II respectively (see also the legend). In the case M3,
only the sinuous mode type I exists. Three groups of wavenumbers B1, B2 and B3 (for
case M3 only Bl and B2) are shown next to each other as labelled in the left bottom
of each panel.

process (see Swearingen & Blackwelder 1987, figure 14). The sinuous mode is more
frequently produced. According to the analysis given by Li & Malik (1995), for this
B2 case, the varicose mode had a comparable growth rate to the sinuous mode but
maintained the maximum growth rate when the Reynolds number was large. In a
recent study, Ren & Fu (2014b) revisited the B2 case and realized that the sinuous
mode type II was missing in their studies. The sinuous mode type II do exist under
experimental conditions however its growth rate is less than the most dangerous mode
(varicose mode) (see p. 559, figure 5 Ren & Fu 2014b). The growth rate of the
sinuous mode type II exceeds the varicose mode downstream (x > 120 cm) which falls
outside the scope of the experimental measurement. In the experimental observation,
most of the streaks start to breakdown at around x = 100-120 cm burying the sinuous
mode type II. It will be elucidated here that this mode can have the largest growth rate
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Index of Re MO M1 M2 M3

1 12.0 (V) 102 (V) 7.4 (S-) 3.0 (S-D
2 12.2 (V) 10.6 (V) 8.1 (S-) 3.1 (S-D
3 12.3 (V) 16.3 (S-II) 84 (S-I) 3.1 (S-D
4 19.1 (S-I) 16.1 (S-II) 8.7 (S-I) 3.1 (S-D
5 18.8 (S-II) 16.0 (S-II) 8.5 (S-I) 3.1 (S-D)
6 18.1 (S-II) 15.6 (S-II) 8.6 (S-I) 2.9 (S-I)
7 17.6 (S-II) 152 (S-II) 8.4 (S-I) 29 (S-D

TABLE 2. Dimensionless frequency F of the dominant disturbance for wavenumber B2
multiplied by 10*. The seven Reynolds number are the same as in figure 11. The type of
the secondary mode is given in the brackets.

downstream and may be responsible for the sinuous transition. For case MO-F-B2, the
varicose mode has a larger growth rate than the sinuous mode type I but eventually
loses out to the sinuous mode type II from Re = 725. It should be emphasized that,
besides the growth rate from the Bi-Global stability analysis, receptivity to secondary
disturbances (see for example Crouch 1997) and the transient growth (multi-mode
behaviour), can influence the outcome of the transition process also. This provides
interesting topics for future studies. As a result, it is not common that two adjacent
streaks breakdown at the same time. Some of the streaks remain stable as can be
found in Swearingen & Blackwelder (1987, pp. 262-263, figures 4 and 5). It can be
deduced that the sinuous mode II must have a dominant influence on the streaks which
become unstable downstream.

For the other two wavenumbers, case MO-F-B1 is initially dominated by the sinuous
mode type I and finally the varicose mode has a considerable advantage. The sinuous
mode type II (followed by sinuous mode type I) dominates case MO-F-B3. In short,
the conclusion drawn by Li & Malik (1995) reappears in figure 11(a) either if the
sinuous mode type II is neglected or the flow condition is limited to the experimental
conditions.

In the compressible case with low Mach number, i.e. case M1 in figure 11(b), it
is evident that the varicose mode is stronger at small wavenumbers while the sinuous
mode takes over at large wavenumbers. This is demonstrated as cases M1-F-B1, M1-
F-B2 and M1-F-B3 are governed by the varicose mode, sinuous mode type II and
sinuous mode type I, respectively. When the Mach number is increased to 3.0, i.e. case
M2 in figure 11(c), the varicose mode loses the competitive edge for the wavenumber
B1. Evaluating all three wavenumbers, the overall disturbances fall into the control of
the sinuous mode type I. The sinuous mode type I indeed becomes the only existing
growing mode in cases M3 (figure 11d) and M4 (not shown). Figure 11 also illustrates
the reduction of the secondary growth rate by increasing the Mach numbers. The
stabilizing effect of the Mach number is justified both for the primary and secondary
instabilities and hence the flow transition.

The dimensionless frequency F of the dominate disturbance for wavenumber B2 is
provided in table 2. Increase in the Mach number reduces this dimensionless frequency.
As also shown in figure 8, mode S-II has a considerably larger frequency as this mode
achieves its maximum growth rate at a larger wavenumber ;.

The sinuous mode type II exists in the incompressible (M0O) and the moderately
compressible cases (M1 and M2). For the cases evaluated herein, this mode has
actually the largest growth rate for the cases MO-F-B2, MO-F-B3 and M1-F-B2 in
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Case MO M1 M2 M3 M4

B1 v v S-I S-I  S-I
B2 S-r s SI S-I 0 S-I
B3 s SI SI — —

TABLE 3. The dominating (fundamental) secondary instability modes. The letter “V’, ‘S-I’
and ‘S-II’ indicate the varicose mode, sinuous mode type I and sinuous mode type II.

the saturated regime. Thus, the sinuous mode type II must be closely watched as it
can play a very important role in the transition process for subsonic and moderate
supersonic flows.

Bottaro & Klingmann (1996) formulated a relation between the frequency w or the
wavenumber o, with amplitude A(U,). In the present study, a similar relation is also
proposed up to moderate compressible flows for both types of sinuous modes partly
reflecting the characteristics of the secondary instability. The scaling with wavenumber
B2 is provided below:

0.88 £ 0.06 MO, sinuous mode type I
0.84 +£0.04 M1, sinuous mode type I
A(U,)  )0.754£0.06 M2, sinuous mode type I
@i (s, 0pr) " )0.57+£0.03 MO, sinuous mode type 11
0.58£0.02 M1, sinuous mode type II
0.62£0.03 M2, sinuous mode type II.

4.1)

The values here for the incompressible case are less than 1.2 as given by Bottaro
& Klingmann (1996). One reason is that different initial amplitudes and different
x coordinates are considered. Here, the relationship derived is based on the seven
positions at Re ~ 700, 713, 725, 738, 750, 762, 773 (in the saturated regime) where
A(U,) reaches a quasi-constant state (see figure 7¢). In fact, we find A(U,)/w;(o opr)
decreases slowly with Re. Therefore, this ratio must be given together with the
parameters (Re, Ma, initial condition) provided.

In hypersonic cases (M3 and M4), no such a simple relation can be found.
Recalling figure 7(c,d), one observes that A(T,) becomes the dominant spanwise
gradient when Ma > 3. This is most probably due to the emerging influence of the
temperature/density gradients when Mach numbers is increased (see also §4.3).

Table 3 summaries the most dangerous modes (with regard to the integrated
secondary growth rates in the (quasi-) saturated regime) of the fundamental secondary
instabilities for the Ma number and wavenumber investigated. The letter V indicates
the varicose mode. S-I and S-II are for the sinuous mode types I and II, respectively.
The relationship between the dominant modes (sinuous or varicose) and the spanwise
wavenumber put forward by Li & Malik (1995) therefore hold only when the Mach
number is not large, even if the sinuous mode type II is ignored. For high-speed
flows (in this study Ma > 3), the sinuous mode always has a larger growth rate.

4.3. Onset conditions

Onset conditions for the five Mach numbers are given in table 4. Results are based
on the spanwise wavenumber B=1 x 1073, The critical streak amplitude A(u) ~ 28 %,
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Ma Sinuous-I (%) Sinuous-II (%) Varicose (%)
0.015 (MO) 28 59 41
1.5 (M1) 31 63 45
3.0 M2) 31 63 44
4.5 (M3) 9 — —
6.0 (M4) 5 — —

TABLE 4. Onset conditions of the secondary instability modes measured by the streak
amplitude A(u). Spanwise wavenumber B=1 x 1073,

59% and 41 % for the sinuous mode type I, II and the varicose mode, respectively,
in the incompressible case (MO0). This is close to but larger than the values given by
Andersson et al. (2001) (26 % and 37 % for sinuous and varicose modes respectively).
The reason for this inconsistency could be the following: (i) the primary state of the
streak is not exactly the same. The Gortler mode and the Klebanoff mode, though
similar, never possess an identical profile. Initial conditions are also not the same.
Differences accumulate and feature the spatial development of the streaks; and (ii)
though A(x) is a commendable measure of the streak amplitude, it does not tell the
whole story through which the shape of the streak is hidden.

In the moderate supersonic cases considered (M1, M2), the critical amplitude
A(u) is increased compared with the MO case. Interestingly, the amplitude is almost
identical for the M1 and M2 cases showing that it is the kinetic streak that governs
the onset condition in moderate supersonic flows. In hypersonic cases however, the
critical amplitude is reduced to 9% and 5% for M3 and M4, respectively. Recall
§3.2, a primary feature in hypersonic cases is the significant increase in A(T) and
decrease in A(u) highlighting the importance of the thermal streak.

4.4. Subharmonic and detuned modes

The subharmonic and the detuned secondary instabilities of Gortler vortices in high-
speed flows also require better understanding. To the authors’ knowledge, this topic
has not been well investigated. Here, we focus on the effect of the Floquet parameter
y. The streamwise location is fixed at Re = 700.

Considering the subharmonic type with y;/8 = 0.5, the perturbations experience
a 180° phase change between the mushrooms. The growth rate of disturbances for
cases M1-S-B1, M1-S-B2 and M1-S-B3 are given in figure 12(a) as a function of the
streamwise wavenumber «;. The curves are similar to the fundamental counterparts
shown in figure 8(a). The sinuous mode type II appears as mode 3 in M1-S-B2
and mode 2 in MI1-S-B3. The growth rate for each of the modes is of the same
order of amplitude as its fundamental counterpart. The peak growth rate of the most
dangerous mode can be smaller (case M1-S-B3) or larger (case M1-S-B2) compared
to the fundamental case. Therefore, the subharmonic secondary instability can have
the largest growth rate leading to flow transition. The frequency and phase velocity
shown in figure 12(b,c) are quite similar to the fundamental case. The sinuous mode
type 1l again stands out. A slight difference in the most dangerous frequency and
velocity is observed in figure 12(b,c).

A global view of the normalized disturbance u, (under subharmonic and detuned
conditions) of the varicose mode, sinuous mode type I and sinuous mode type II
is provided in figure 13. Contour surfaces corresponding to u, = £0.1 are coloured
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FIGURE 12. (Colour online) (a) Growth rate of the subharmonic secondary disturbances
as a function of the streamwise wavenumber «, at Re = 700. Cases M1-S-B1, M1-S-B2
and M1-S-B3 are shown. Ma=1.5, ¥;=0.5, B=0.5,1.0 and 2.0 x 1073. The labels ‘Mode
1,2, ... indicate the ranking of maximum growth rate. The most amplified four modes
(if they exist) are provided. (b) Dimensionless frequency F (see (2.7)). The dominant
frequencies F = 3.4, 10.8 and 11.9 x 10~* (belonging to the largest growth rates) are
circled for the three cases. (c) Phase velocity ¢ of the corresponding disturbances. The
dominant phase velocity ¢ =0.654, 0.809 and 0.766 are circled.

blue and yellow, respectively. The plot includes one period in the spanwise and two
in the streamwise directions. The disturbance repeats itself in both directions. The
detuned mode exhibits a phase change of angle ¢ (0° < i < 180°, depending on the
Floquet parameter y) from neighbouring disturbances. In addition to modifications to
the steady state (mushrooms or bells), subharmonic and detuned disturbances result in
a disruption of the original spanwise periodicity of the primary state.

Figure 14(a) shows the growth rate of secondary disturbances as a function of
the Floquet parameter y for MI1-D-B1, M1-D-B2 and M1-D-B3. The streamwise
wavenumber o is specified to the value at which the fundamental disturbance has
the maximum growth rate. When y;/8 increases from O to 0.5, the growth rate of the
mode increases or decreases monotonically. Some modes (e.g. mode 2 in M1-D-B3)
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FIGURE 13. (Colour online) Contour surfaces of the normalized streamwise velocity
perturbations u, at Ma = 1.5, Re = 700. The surfaces coloured yellow and blue indicate
u, =0.1 and —0.1, respectively. One period in spanwise and two periods in streamwise
directions are shown. (a) Subharmonic varicose mode, B = 1.0 x 1073, «a, = 0.266; (b)
subharmonic sinuous mode type I, B=1.0 x 1073, a, = 0.248; (c¢) subharmonic sinuous
mode type I, B=1.0 x 1073, a, = 0.428; (d) detuned varicose mode, B =2.0 x 1073,
vi = 0.24, a, = 0.320; (e) detuned sinuous mode type I, B = 2.0 x 1073, y; = 0.24,
oy, =0.320; (f) detuned sinuous mode type II, B=2.0 x 1073, 3, =0.24, a, =0.320.

are actually insensitive to the Floquet parameter. Detuned modes, therefore, are not
dominating in these cases. Computations have been carried out for all the five Mach
numbers and three wavenumbers in table 1. We demonstrate that detuned modes
generally have smaller growth rates compared with their fundamental or subharmonic
counterparts except for case M2-D-B1 (Ma = 3.0) and M3-D-B1 (Ma = 4.5). The
case M2-D-B1 is highlighted in figure 14(b). Again, the modes are named after their
maximum growth rate as mode 1, mode 2 ... . The second amplified mode reaches
its maximum growth at a detuned state. This phenomenon was not observed in the
incompressible case. Within the cases studied in this article, these two exceptions are
both the second amplified mode which would not create a primary influence on the
transition process.

In the above analysis, we have shown that Floquet parameter can indeed alter the
growth rate of disturbances. This is true for both the streak type flows (Li & Malik
1995; Andersson et al. 2001; Ricco, Luo & Wu 2011) and the secondary instability of
T-S waves (see Herbert 1988, and the references therein) for which the growth rate
of the subharmonic mode can have a distinct difference, larger or smaller than the
fundamental type. One notable exception are crossflow vortices. It was shown that the
detuned eigensolution can be regarded as a superposition of the eigenfunctions with
identical eigenvalues (see Wassermann & Kloker 2005; Bonfigli & Kloker 2007), thus,
having the same growth rate. This is also validated in a recent Floquet analysis (Xu,
Liu & Jiang 2014).

5. Conclusions

The spatial development and fundamental, subharmonic and detuned secondary
instabilities of Gortler vortices in high-speed boundary layer flows are numerically
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FIGURE 14. (Colour online) Growth rate of the secondary disturbances versus the Floquet
parameter y at Re =700. ‘Mode 1,2 ... are named after the maximum growth rate of
the fundamental disturbances (see figure 8a). (a) Cases M1-D-B1, M1-D-B2 and M1-D-B3.
(b) Case M2-D-B1.

investigated in this paper. Five groups of Ma numbers (Ma = 0.015, Ma = 1.5, 3.0,
4.5 and 6.0) are studied to illustrate the compressibility effect. The Gortler vortices
with three groups of representative global spanwise wavenumbers (B = 0.5, 1.0 and
2.0 x 1073%) are considered to reveal the effect of primary spanwise wavelength.

The development of Gortler vortices acts to strengthen the boundary layer streaks
regardless of the Mach number. In the current study, the streak amplitude A(u) keeps
growing downstream (before the right-branch regime is reached). The sinuous mode
type I becomes unstable first, followed by the varicose mode and then the sinuous
mode type IL

Mach number affects Gortler vortices in two ways: (i) The growth rate of the
primary Gortler mode decreases with Mach number. The streaks are thus weakened;
and (ii) increase in Ma gives rise to the trapped-layer mode (mode T) for the primary
instability. This mode has its disturbances detached from the wall. As a result of
the above changes, conventional mushroom structures are replaced by bell-shaped
structures, leaving the near-wall region an unperturbed area. The difference in the
primary instability leads to a remarkable change on the secondary instability. In
subsonic and moderate supersonic flows, varicose and sinuous (type I and type II)
modes can both be responsible for the transition process. The sinuous mode type
II, whose disturbances concentrate near the stem of the mushroom, is demonstrated
to have the largest growth rate when the streak amplitude is large. However, it is
missing in existing studies. The relationship between the dominance of sinuous or
varicose modes and the primary wavelength in incompressible flow (Li & Malik
1995) is no longer valid in hypersonic flows. The sinuous mode becomes the most
dangerous regardless of the spanwise wavelength when Ma > 3. The effect of the
Floquet parameter ¥ on the growth rate of the secondary instability is clarified. The
subharmonic type can become the most dangerous mode, e.g. in the case M2-S-B3.
The detuned type, however, is not responsible for the flow transition though in case
M2-D-B1 and M3-D-B1, one of the sub-dominant modes reaches its maximum growth
rate under detuned state.
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The boundary layer transition promoted with concave curvature (Gortler instability),
roughness elements or the FST (Klebanoff mode) can follow a similar path utilizing
the lift up mechanism. Streamwise curvature acts as an unsophisticated influence,
providing a chance to conduct this comprehensive study. The introduction of
roughness elements not only brings in discernible wakes which support sinuous
and varicose modes, but also creates new mechanisms relating to receptivity, flow
separation and shock wave boundary layer interactions. All these phenomena, of
course, are closely related to the geometry of the roughness elements. In moderate
supersonic flows (Choudhari et al. 2010; De Tullio et al. 2013), the varicose mode
is demonstrated to be the most dangerous in the wake of diamond (Ma = 3.5) and
square (Ma = 2.5) shaped roughness elements. In a subsequent study by Choudhari
et al. (2013), the Mach number is increased to 5.9 and sinuous perturbations become
dominant. In the study of Groskopf, Kloker & Marxen (2010) and Kegerise et al.
(2012), the Mach numbers are 4.8 and 3.5, respectively, both types of perturbations
emerge. In brief, the various parameters, Re, Ma, shape, height and arrangement of
the roughness elements, on the roughness induced transition are far from fully clear.
The role of sinuous mode type II in this flow also needs clarification. Future studies
are thus required on this topic.

Recalling the discussions in § 3, with an initial amplitude of A(u) =2 x 10~ which
is in the range of those observed in the environment, it takes a long distance for
the streaks to be matured and for the secondary instabilities to set in (see figure 6).
Increase in the Ma number hampers the development of the streaks further and thus
may cause failure in flow transition. In some practical situations, for example, before
the entrance of the scramjet combustor, this flow behaviour is undesirable. An open
question remains as how to achieve optimal control of hypersonic flow transition based
on the secondary instability of Gortler vortices.
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Appendix A
The expressions for the operators in (2.3) are given below.
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