PHYSICS OF FLUIDS 28, 024110 (2016)
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Stabilization of two-dimensional disturbances in hypersonic boundary layer flows
by finite-amplitude streaks is investigated using nonlinear parabolized stability equa-
tions. The boundary-layer flows at Mach numbers 4.5 and 6.0 are studied in which
both first and second modes are supported. The streaks considered here are driven
either by the so-called optimal perturbations (Klebanoft-type) or the centrifugal insta-
bility (Gortler-type). When the streak amplitude is in an appropriate range, i.e., large
enough to modulate the laminar boundary layer but low enough to not trigger second-
ary instability, both first and second modes can effectively be suppressed. © 2016 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4941989]

. INTRODUCTION

Recent studies on finite-amplitude streaks have provided a promising control methodology to
attenuate the Tollmien-Schlichting (T-S) waves thereby delaying or even suppressing flow transition.!
Analysis on this passive control strategy is now extended to high-speed flows in the current study.

Streaky structures inside the boundary layers are often observed in a number of practical situa-
tions, triggered either naturally or artificially, e.g., flows in the presence of high free-stream turbu-
lence (FST),? over surfaces with concave curvature (Gortler instability)® or tripped by roughness
elements of certain geometries.* Laminar-turbulent transition in flows dominated by streamwise-
elongated streaks is often caused by their sinuous/varicose secondary instabilities.> Prior to the
onset of secondary instabilities,® T-S waves can, to a remarkable extent, be stabilized. The direct
numerical simulations (DNSs) by Cossu and Brandt’# showed that the T-S waves can be effec-
tively stabilized by optimal streaks. Here, “optimal” stands for the disturbance which experience
maximum energy growth measured in a prescribed spatial or temporal range. In the Blasius bound-
ary layer, as investigated by Andersson et al.” and Luchini,'? the Re-independent optimal param-
eters are spanwise wavenumber f,,; = 0.45 and frequency w,, = 0. Increase in the amplitude of
the streaks shows a stronger effect of stabilization. This is due to the modification to the mean
flow caused by the nonlinear development of streaks. The optimal streaks, nevertheless, are not
necessarily “optimal” for the stabilization of T-S waves.!!

The experiments performed by Fransson and co-workers successfully materialized the idea of
passive control with circular roughness elements'>~'# and miniature vortex generators (MVGs).!>~!3
The threshold streak amplitude is substantially increased from 12% to 32% with the latter. The
elaborated streaky flow excited in the boundary layer (e.g., with aforementioned MVGs) suffers
from considerable viscous dissipation. To prevent the rapid decay of streaks, multiple MVGs in
the streamwise direction could be necessary.!> The control was also shown to be robust when
subjected to random noise. On the other hand, some disadvantages are reported for MVG/roughness
elements. (1) Under off-design flow conditions, the MVGs hardly play a positive role in maintaining
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laminar flows; (2) when the flow is exposed to FST, this passive control could fail because of the
interactions between the MVGs and FST. Recently, free-stream vortices are proved to be able to
generate effective streaks.!'” This provides a new strategy through which the above weakness may be
overcome.

Apart from the two-dimensional (2-D) disturbances in a flat-plate boundary layer, streaks
can stabilize the oblique waves''?" as well. A similar approach for transition control in three-
dimensional boundary-layer flow over swept-wings has been studied intensively by Saric et al.>'"*?
Here, the sub-critical crossflow modes are excited by the micron-sized roughness elements, which
through their nonlinear interactions with the mean flow weakened the critical crossflow mode as
well as its secondary instabilities.”®

Up to today, most of the existing studies performed on this topic are confined to incompressible
flows. The present study thus aims at understanding the mechanism in high-speed boundary layer
flows as well as exploiting this potential control methodology. First mode and second mode are both
considered. The formulation and methodology are described in Sec. II. Results on the stabilization
of first and second modes are presented and discussed in Sec. III. The present study is concluded in
Sec. IV.

Il. METHODOLOGY AND FRAMEWORK OF INSTABILITY ANALYSIS
A. Governing equations of the disturbances

In the framework of the stability analysis, the instantaneous flow field ¢ = (p,u,v,w,T) is
considered as a superposition of the perturbation § on the laminar base flow Q. For a 2-D boundary
layer,

q(x,y,2,t) = Q(x,y) + 4(x,y,2,1). (1)

The base flow investigated is given by the self-similar solution to the compressible boundary layer.
To derive the perturbation equations, we substitute (1) into the compressible Navier-Stokes (N-S)
equations and subtract the equations for the mean flow. The resulted equations can be written in a
well-identified and compact form?*

oG 04 G 0§ - 0% 0%q 0%q 0%
I'—+A—+B—+C—=+Dqg =V,y,—+V,,—+V,;— +V,y———
ot 0x Oy 0z a 0x? Yoy a2 Yoxoy
9% %G - @
+Vy—7—+V,x——+N.
Y*oyoz “F0z0x

The matrices I', A, B, ... in (2) are functions of the mean flow quantities (detailed expressions
can be found in the authors’ previous papers®®). Formulation of the nonlinear parabolized stability
equations (NPSE) is standard and thus omitted here. Readers may refer to Herbert*® for overview
of the method, and Li and Malik?’ and Andersson ef al.2® for numerical issues related to the residue
ellipticity of the equations.

In the present study, the space coordinates are scaled with the boundary layer length scale

0p = A lv:ox(*)/ U;, where asterisk stands for dimensional quantities. xg is the streamwise coordinate

of a specified position. All the flow quantities are scaled with their free-stream values except the
pressure by p¥ (UZ%)2. The flow is thus characterized with the following dimensionless numbers:
s UL6s U: MGy
Reozp O Ma=—>=_ pPr= L 3)

I NZ e

B. Perturbations in hypersonic boundary layers

In 2-D hypersonic boundary layers, Mack’s second mode.? usually has the largest growth
rate thus becoming the dominant instability. Employing the terminology suggested by Fedorov
and Tumin,* this mode becomes unstable when the fast mode (mode F) and slow mode (mode
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FIG. 1. Neutral curves of two-dimensional disturbances in hypersonic boundary layers with Ma =4.5 and 6.0.

S) synchronize with each other.’!*> Second mode can be mode F or mode S depending on the
branching of the discrete spectrum.? In fact, the amplification of second mode is related to both
mode F and mode S, i.e., a double-mode activity.

The neutral curves of the 2-D disturbance in Re—w plane at Ma = 4.5 and 6.0 are shown in
Fig. 1. Re = / p5,Usx*/us, is used as a measure of the streamwise coordinate. In the range of
the parameters considered here, the unstable regions of first and second modes are well separated
for Ma = 4.5 while they overlap at Ma = 6.0. The current study employs the perturbations with
frequencies F; = 2.2 X 1074, F, = 1.2 x 107, and F; = 0.6 x 10~* where F = w/Re. The parame-
ters of the four cases studied are listed in Table 1. Perturbations considered in cases 1 and 2 are
second- and first mode, respectively. Note that in the Ma = 6.0 flow (cases 3 and 4), perturbations
with F, and F3 manifest both first and second modes successively.

All the cases share the following parameters: stagnation temperature 7, = 333 K, Prandtl num-
ber Pr = 0.7, and Reynolds number Rey = 300. Adiabatic wall boundary condition is specified for
the mean flow. If in a typical experimental configuration (see, for example, Fedorovet al.**), the
stagnation pressure is specified to be p? = 10° Pa, then the related dimensional flow quantities will
correspond to those provided in Table II.

In Fig. 2, the evolution of the discrete spectrum at Ma = 4.5 and 6.0 for all the three frequen-
cies are presented. At low Reynolds numbers, the mode S and mode F synchronize with the
slow (¢, = 1 — 1/Ma) and fast acoustic waves (¢, = 1 + 1/Ma), respectively. Further downstream,
the phase velocity of mode S increases and mode S may become unstable once passing through
branch-I of the neutral curve of first mode. Accordingly, the phase velocity of mode F decreases.
The synchronization between the mode F and the entropy/vorticity wave takes place when ¢, = 1.3
Finally, the synchronization between mode S and mode F starts when they have the same phase
velocity. This process remains for a range of Re and is responsible for the growth of second mode as

TABLE 1. The flow and disturbance parameters for 2-D perturbations stud-
ied in the current work.

Flow case Flow parameters Perturbations
Case 1 Ma=4.5, F=F, Second mode?

Case 2 Ma=4.5, F=F;3 First mode®

Case 3 Ma=6.0, F=F, First and second mode?
Case 4 Ma=6.0, F=F; First and second mode?
aMode F/S

"Mode S
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TABLE L A set of typical dimensional flow parameters for experimental reproduction (subjected to p* = 10° Pa).

Ma T (K) P (Pa) Us (m/s) Pl (kg/m?) xg (mm)
45 65.94 345.53 733.11 0.018 29.7
6.0 40.61 63.34 767.10 0.0054 53.9

well as the branching of the spectrum.3! When curvature is present, the above synchronizations can
be substantially influenced.3®

C. The streaks

As introduced in Section I, the Gortler modes or Klebanoff modes are natural and straight-
forward streak generators. They both manifest as counter-rotating streamwise vortices’’ and give
rise to boundary layer streaks through /ift-up mechanism.**° The primary differences between the
two are as follows: (i) Gortler modes are non-modal in small Re regime and approach exponential
modal growth when the Re is asymptotically large.*! Whereas Klebanoff modes are fundamentally
non-modal and can be recovered either with a linear combination of the eigenmodes or with the
adjoint equations iteratively accounting for the non-parallel effects. (ii) The Gortler modes are
driven by the centrifugal instability and can keep growing before entering the right branch regime.*!
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FIG. 2. Evolution of the discrete spectrum of perturbations with frequency Fj, F, and F3. Phase velocity ¢, and growth
rate a; are provided for Ma=4.5 (a) and (b) and Ma =6.0 (c) and (d), respectively. The regions of synchronization between
mode F and mode S are circled in the diagram of the phase velocity. The thick straight line in (a) and (c) indicate the phase
velocity of the fast acoustic wave (¢, = 1+ 1/Ma), entropy/vorticity wave (c, = 1), and slow acoustic wave (¢, =1—1/Ma),
respectively. The growth rate —; of the mode S with F = F3 at Ma =4.5 is multiplied with 10 for a clear demonstration in

(b).
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On the other hand, the Klebanoff modes would be amplified in a rather limited range and therefore
their growth is termed the transient growth.

The optimal disturbances can be computed using an eigenfunction expansion or a marching
approach (with adjoint equations). In compressible boundary layers, they are described in work
by Hanifi et al.*> and Tumin and Reshotko.**** The readers may refer to these papers for the
formulation and relevant computational methods. Here, we utilize the local approach to compute the
optimal perturbations. The energy norm used in this article follows the one defined by Mack® and
Hanifi et al.,** i.e.,

(G1,32) = / §1'Mg, dy, )
0

_T

612’

with M = diag (
pyM )
related energy transfer terms from the perturbation energy

i fa e anT .
05 Ps p,m) and ¢ = (p,4,0,®,T) . The norm eliminates pressure

®)

The local linear stability equations are solved as an eigenvalue problem. The parallel base flow
is assumed. Again, with standard procedures, the optimal disturbance is then given by a linear
combination of the eigenvectors. The readers may refer to the article by Schmid and Brandt.*®

Fig. 3 shows the maximum energy growth G(x) versus the streamwise coordinate x. In the
Ma = 3.0 case, shown in Fig. 3(a), the results are compared with Tumin and Reshotko.** The local

1
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FIG. 3. Maximum energy growth G(x) of the optimal disturbances. Reg =300, T; =333 K. (a) Ma=3.0, symbols denote

results from Tumin and Reshotko,*? (b) Ma =4.5, and (c) Ma =6.0.
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FIG. 4. Effect of concave curvature on the linear spatial development of streaks: from Klebanoff-type to Gortler-type.
Maximum value of streamwise velocity component | |4y is plotted as a function of Re. Ty =333 K, Ma=4.5.

boundary layer is given by a self-similar solution at Re = Rey = 300. Within the range of spanwise
wavenumber considered here, 8 = 0.2 gives the largest energy growth G,,,,. This amplification ratio
also depends on the streamwise coordinate of the inlet x( and outlet x;. As shown in Figs. 3(b) and
3(c), increasing the Mach number to 4.5 and 6.0 causes the transient growth of perturbation with
larger wavenumber (e.g., 8 > 0.1) to decrease and for those with smaller § to increase. The optimal
wavenumber f3,,, thus decreases. For the three Mach numbers considered here, streaks with § = 0.1
experience a sufficient transient growth. Therefore, they are employed in this study to stabilize the
boundary layer.

When a large enough concave curvature is present, Gortler instability becomes the leading
mechanism for the amplification of streaks as shown in Fig. 4. We define the global curvature K
as K = k/Re = —v./(ULR") where R* is the local radius of curvature and k is local curvature.
A flat plate as well as concave plates (with three different curvatures) are compared. The spatial
amplification of streaks attributes to the transient growth over a flat (K = 0) or very weakly curved
(K = —107'9, for example) plate. This is finally replaced with exponential growth for larger curva-
tures (K = —107% and—107%). The influence of curvature on the streak profiles is shown in Fig. 5.
Normalized streamwise velocity profiles |i| contributed by streaks are plotted uniformly distributed
within 477 < Re < 1498. By increasing the curvature, differences become evident further down-
stream where the Gortler modes tend to get closer to the wall than Klebanoff modes. It should be

150

100

Y

50

FIG. 5. Profiles of the streamwise velocity component || distributed within 477 < Re < 1498. They are normalized to have

unit maximum value. Ty =333 K, Ma=4.5.
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noted that, a continuous transformation from Klebanoff modes to Gortler modes can be achieved by
gradually increasing the curvature. To investigate these two type of modes, in the present paper we
study streaks in cases with K = 0 and K = —107%. These are termed here Klebanoff-type (K-type)
and Gortler-type (G-type) streaks, respectively.

The steady Gortler or Klebanoff mode with spanwise wavenumber S = 0.1 is introduced into
the laminar boundary layer either near the leading edge Re < 100 (for Klebanoff mode) or at
Re = Rey = 300 (for Gortler mode). The 2-D disturbances are obtained from the local eigenmode
and they are added to the flow at Re = 500 (ahead of branch-I of the neutral curve). The Klebanoff
mode has been optimized for Re = 1200 with the inlet corresponding to Re = Reg = 300.

lll. RESULTS AND DISCUSSIONS
A. Interaction with Klebanoff-type streaks

The stabilizing effects on first and second modes are investigated first at Ma = 4.5. The modal
perturbations of frequencies F| and F3 become unstable as second- and first mode, respectively, as
shown in Fig. 1. The interaction between the streak and first/second mode is computed through
the following procedure. The Klebanoff mode (mode(0,+1)) is introduced into the boundary layer
near the leading edge. Initially this perturbation is integrated linearly up to a given position elim-
inating the influence of initial transient behavior. The amplitude of the Klebanoff mode is then
prescribed and nonlinear development of the streak is followed downstream. The 2-D disturbance
(mode(1,0)) is later initialized at Re = 500 with a sufficient low amplitude thus ensuring linearity.
The number of Fourier components kept in the calculation is —12 to 12 in the spanwise wavenumber
and O to 3 in the frequency which has been tested to be sufficient to characterize the nonlinear
interactions.

Four sets of streaks of different amplitudes are denoted as K1, K2, K3, and K4. The spatial
development of the streaks as a function of the local Reynolds number Re is presented in Fig. 6.
The maximum amplitudes are A(u) = 1.1%, 2.2%, 3.4%, and 4.7%, respectively. The amplitude is
defined as

A(u) =0.5 (max(ﬁ) - min(ﬁ)) (6)
Y,2 Y,z

The amplitude of the T-S waves measured in terms of temperature and streamwise velocity
perturbations are given in Fig. 7. The temperature perturbation 7 has the largest amplitude in
hypersonic flows considered here and can be regarded as a measure of |g'|,,.,- The dashed lines

5%
4%t
3% f
=
<
2% f
o,k e

0% . . . . .
300 500 700 900 1100 1300 1500
Re

FIG. 6. Spatial development of the streak amplitude. The maximum amplitudes are A(u;K1)=1.1%, A(u;K2)=
2.2%, A(u;K3)=3.4%, and A(u;K4)=4.7%, respectively.
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FIG. 7. Evolution of the 2-D perturbations in a streaky (Klebanoff-type) flow with Ma=4.5 and Ma=6.0. The initial
amplitude of the 2-D perturbation is |u],,x = 10710, The amplitude of the temperature and streamwise velocity perturbations
|T”|imax and |1’ |uqy is shown here. K1, K2, K3, and K4 indicate the streaks of different amplitudes. Development of the 2-D
perturbations without streaks is shown with dashed lines. (a) Second mode (case 1, F = F'1). (b) First mode (case 2, F = F'3).
(c) First/second mode (case 3, F' = F2). (d) First/second mode (case 4, F = F3).

indicate the amplitude of the 2-D perturbations in the absence of streaks. It is therefore obvious that
the streaks can stabilize both first and second modes. An increase of the streak amplitude resulted
in a stronger stabilization. This is demonstrated as decreased amplitude of the 2-D perturbations in
Figs. 7(a) and 7(b). It is worth noting that the effect of streaks on the component of u’ is not always
stabilizing, e.g., first mode shown in Fig. 7(b ii). Since |u’| is one order of magnitude smaller than
|T”|, the general stabilizing effect should not be influenced.

In hypersonic boundary layers, perturbations can be co-modulated by first and second modes,
e.g., the Ma = 6.0 boundary layer (cases 3 and 4). Here, we consider perturbations with frequency
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F = F2 and F = F3. With the increase of Re, they behave as first- and second mode successively.
Second mode exerts relatively more influence on case 3 (F = F2). The streaks included here are
of Klebanoff-type. The maximum amplitudes are A(u) = 0.75%(K1), 1.2%(K?2), 1.6%(K3), and
2.1%(K4) in case 3. In case 4, they are 0.71%, 1.1%, 1.5%, and 1.9%. The stabilization is revealed

x10°

16f (aid)

!
‘T |ma,r

0 L L L e 0 —
500 700 900 1100 1300 1500 500 700 900 1100 1300 1500
Re Re

’
|'U |nm,r

'
‘T ‘mn.r

0 - - - - 0 - - - -
500 700 900 1100 1300 1500 500 700 900 1100 1300 1500

0.35

03F

0.25f

0.05f

0
500 700 900 1100 1300 1500
Re

FIG. 8. Evolution of the 2-D perturbations in a streaky (Gortler-type) flow with Ma =4.5. The initial amplitude of the 2-D
perturbation is |u/|ex = 10710, The amplitude of the temperature and streamwise velocity perturbation |7”|,qc and [u’|yax is
shown here. G1, G2, ..., G7 indicate the streaks of different initial amplitudes. Development of the 2-D perturbations without
streaks is shown with dashed lines. Dashed-dotted lines correspond to the result without curvature (same as the dashed lines
in Figs. 7(a) and 7(b)). The circle and square symbols indicate the onset of secondary instability. The profiles for G5 near the
onset of secondary instability (denoted with a triangle) are given in Figs. 9(c) and 9(d). (a) Second mode (case 1, F' = F'1).
(b) First mode (case 2, F = F'3). (c) Spatial development of the streaks.
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in Figs. 7(c) and 7(d) indicating that the combined first/second mode can be effectively stabilized
with finite amplitude streaks as well.

B. Interaction with Gortler-type streaks

When concave curvature is present, Gortler instability can play a dominant role. On concave
walls, first/second modes become more unstable as well (see also Ref. 36). The streamwise curva-
ture (K = —107°) included here stands for the most commonly investigated case and represents
typical Gortler instability (see Sec. II). Fig. 8 shows the interactions between Gortler instability and
first/second mode. The dashed-dotted lines (without curvature) and dashed lines (with curvature)
in Figs. 8(a) and 8(b) indicate the flow without streaks. Both first and second modes are enhanced
by concave curvature. Gortler vortices with different amplitudes are considered(G1, G2,..., G7).
The initial amplitudes are prescribed as A(u; G1) = 2 X 107", A(u; G2) =2 x 10719, ..., A(u; GT) =
2 x 107°. In the current Gortler flow, the threshold amplitude*’ for the sinuous secondary instability
is close to A(u) = 9% and is shown with a dashed line in Fig. 8(c). The streak amplitude increases
rather fast and exceeds this critical value regardless of the initial amplitude. Figs. 8(a) and 8(b)
shows the evolution of second/first mode in the presence of Gortler-type streaks. The perturbations
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FIG. 9. Spanwise averaged total (a) and (c) and perturbation (b) and (d) velocity and temperature profiles at Ma =4.5 (cases
1 and 2). Klebanoft-type streaks are shown at Re=1500 in (a) and (b). The red dashed lines correspond to the boundary
layer without streaks. Gortler-type streaks are shown in (c) and (d) with an initial amplitude of A(u)=2x10"7 (G7). The
red solid lines indicate the profile at Re = 1059 according to the triangle symbol (onset of secondary instability) in Fig. 8(a).
Inflection points arise from this position and become more obvious downstream (see dashed lines at Re = 1064 and 1069).
Dashed-dotted lines in (c) and (d) shows the profiles at Re = 1044, 1049, and 1054 which are before the onset of secondary
instability.
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though, can be stabilized by a certain extent, they finally become more unstable due to the second-
ary instability of the streaks. This is shown with a sudden uplift of the amplitude. The circle and
square symbols indicate the uplift point of |T”|,,. As can be found in Sec. III C, it is the secondary
instability of streaks that causes the failure of stabilization. Calculations are stopped before the

amplitude becomes extremely large and computations blow up.

C. Mechanisms of stabilization

In hypersonic boundary layers, both first and second modes (as well as combined first/second
mode) can be effectively stabilized by finite amplitude streaks. The key mechanism behind lies
in the modification of the base flow by the nonlinear interaction with streaks. Fig. 9 shows the
spanwise averaged total (a,c) and perturbation (b,d) velocity and temperature profiles at Ma = 4.5.
The Klebanoft-type streaks at Re = 1500 are shown in Figs. 9(a) and 9(b). The base flow is modi-
fied into a fuller profile. This modification becomes more obvious when the streak amplitude is
increased. In Figs. 9(c) and 9(d) similar data are presented for the Gortler-type streaks with the
initial amplitude of A(u) =2 x 1077 (G5). The solid red lines indicate the profile at Re = 1059
which corresponds to the triangle symbol in Fig. 8(a). The dashed-dotted lines show the profiles at
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FIG. 10. Nonlinear development of 2-D perturbation in streaky flat-plate flows at Ma=4.5. Streak amplitude corresponds
to K4 with a maximum A(u)=4.7%. (a) Amplitude of second mode (case 1) measured with |7A'|40|m,u.. The initial amplitude
is prescribed as |ii1,0| = 108, 0.001, 0.005, and 0.01, respectively. The curves are scaled with the initial value at Re = 500.
(b) Modification to the mean flow measured with |7A'0,0|max with the presence of streaks and second mode (case 1). (¢) and (d)
Same as (a) and (b) but for first mode (case 2). The initial amplitude is it} 0| = 1078, 0.001, 0.01, and 0.02, respectively.
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Re = 1054, 1049, and 1044 where the 2D perturbations are stabilized. The dashed lines show the
profiles at Re = 1064 and 1069 where the flow becomes secondary unstable. It is obvious that both
the velocity and temperature profiles become inflectional at Re = 1064 and 1069, giving rise to the
secondary instability (inviscid in nature).
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FIG. 11. (a) and (b) Nonlinear development of 2-D perturbation in streaky flat-plate flows at Ma =4.5. Amplitude of
the mode (m,n) with m=0, 1, 2, 3 and n=0, 1, 2,...,5. F = F; (second mode). Initial amplitude of 2-D perturbation
|@i1,0l =0.005. The dashed lines show the position at Re = 1222 where secondary instability analysis is performed. Initial
streak amplitude corresponds to K4 (a) and K5 (b). (c) and (d) Secondary instability of the time-averaged streaky flows (four
periods shown in spanwise). Contour lines show the streamwise velocity of the base flow. Nine equally spaced contour levels
are from 0.1 to 0.9. The corresponding secondary perturbations (of the most unstable frequency) are shown with colored
contours. (e) Growth rate of the secondary perturbation as a function of the dimensionless frequency F. The colored area
shows the unstable half-plane. The solid (blue) circles indicate the most unstable frequency. The dashed line shows the
frequency Fj =2.2x 107 of the 2-D perturbation.
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D. Nonlinear effects

In the study above, we have considered 2-D perturbations of small amplitudes. When their
amplitudes are increased, e.g., to the same order of streaks, fully nonlinear interactions both in the
spanwise wavenumber and frequency spaces can result in a multi-fold influence on the perturba-
tions.

To examine the interaction of streaks with the nonlinear 2-D perturbations, calculations are
performed for four different amplitudes of these waves. Here, the initial amplitude of streaks is the
same as K4 (A(u)nqx = 4.7%) in Sec. III. The results are presented in Fig. 10. The infinitesimal
amplitude |7(1,0)|uax = 1078 represents the linear case. In nonlinear cases, the exponential growth
of mode (1,0) (the perturbation of main interest) is damped due to redistribution of energy to its
super-harmonics. A stronger stabilization effect is thus shown in Figs. 10(a) and 10(c) both for first
and second modes. Comparison with the linear case shows that the nonlinear interactions become
noticeable when the initial amplitude is rather large, e.g., 7,0 > 0.001.

It is obvious here the most important interaction is between modes (0, 1) and (0,—1) in current
streaky flows. In the fully nonlinear cases interaction of modes (1,0) and (—1,0) becomes domi-
nating as well. Both interactions give rise to mode (0,0) modifying the mean flow. Figs. 10(b) and
10(d) shows a larger amplitude of mode (0,0) with increasing the amplitude of mode (1,0). The
mean flow is modified to a larger degree as a result. The secondary instability will have a chance to
set-in, e.g., in Figs. 10(a) and 10(c) where |ii; 0| = 0.01 and 0.02, respectively. Therefore, it should
be underlined that this passive control may fail with a too large amplitude of either streaks or 2-D
perturbations.

Here, we investigate the mechanism on the failure of stabilization in a fully nonlinear frame-
work. The fundamental 2-D wave has an initial amplitude of [i; 0| = 0.005 and the initial ampli-
tudes of streaks correspond to K4 (A(t)yax = 4.7%) and A(u)q, = 6.0% (termed KS), respectively.
Both amplitudes A(u),,q, are measured with infinitesimal 2-D perturbation. The actual amplitudes
are thus larger. The results are shown in Fig. 11 where the amplitude of modes with m = 0,...,3
andn =0,...,5 are plotted. In the case of with K4 streak, the perturbations can still be successfully
stabilized as shown in Fig. 11(a) where fully nonlinear interactions are present. With stronger streaks
in Fig. 11(b), though modes (1,n) can be suppressed at some point, they finally become unstable
along with their super-harmonics (e.g., modes (2,n) and (3,n)) and get amplified rather quickly. A
secondary instability analysis is thus given for the time-averaged mean flow at Re = 1222 (see dashed
lines in Figs. 11(a) and 11(b)). Secondary perturbations of streamwise velocity together with the mean
flow are shown in Figs. 11(c) and 11(d) for the two cases. The frequency correspond to the most
unstable point in Fig. 11(e). The streak amplitudes at this position are 6.5% and 8.7%, respectively.
It is obvious that the secondary perturbation become unstable in both cases. They are of sinuous type
and have a lower frequency compared to the 2-D perturbation. It is important to note the differences:
(i) the growth rate of secondary perturbation with larger amplitude of streak is certainly larger. (ii)
The unstable band of frequency in Fig. 11(c) is outside the 2-D perturbation while in (d) a larger band
covers this frequency. This is responsible for the failure of stabilization in (b).

IV. CONCLUSION

From the above analysis, it can be concluded that the mechanism behind the stabilization in
hypersonic boundary-layer flows is similar to that in incompressible flows — a favorable modification
to the mean flow. Although the two modes are different in nature, this study shows that both first and
second modes can be effectively stabilized with finite amplitude streaks. Klebanoff-type streaks are
more interesting as they have a mild spatial growth and their amplitude is more controllable. With
regard to the Gortler-type streaks, where curvature is large enough, the secondary instability becomes
more inevitable due to exponential growth. The concave curvature, per se, destabilizes the pertur-
bations. On the other hand, curvature can be regarded as an effective controller on streak amplitude
offering further potential improvement and optimization of the control methodology.
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