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ABSTRACT

Proper orthogonal decomposition (POD) serves as a principal approach for modal analysis and reduced-order modeling of complex flows. The
method works robustly with most types of fluid data and is fundamentally trusted. While, in reality, one has to discern the input spatiotemporal
data as passively contaminated globally or locally. To understand this problem, we formulate the relation for uncertainty transmission from input
data to individual POD modes. We incorporate a statistical model of data contamination, which can be independently established based on experi-
mental measurements or credible experiences. The contamination is not necessarily a Gaussian white noise, but a structural or gusty modification
of the data. Through case studies, we observe a general decaying trend of uncertainty toward higher modes. The uncertainty originates from twofold:
self-correlation and cross correlation of the contamination terms, where the latter could become less influential, given the narrow correlation width
measured in experiments. Mathematically, the self-correlation is determined by the inner product of the data snapshot and the mode itself.
Therefore, the similarity between the input data and the resulting PODmodes becomes a critical and intuitive indicator when quantifying the uncer-
tainty. A scaling law is shown to be applicable for self-correlation that promotes fast quantification on sparse grids.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0157849

I. INTRODUCTION
In fluid mechanics, proper orthogonal decomposition (POD)1,2

is widely applied to investigate turbulent structures, model reduction,
and flow control. Readers are referred to Taira et al.3,4 for reviews. The
input data of POD can be from experimental measurements or
numerical simulations, which are inevitably subject to errors stemming
from, e.g., environmental noise, truncation, and imperfection of mod-
els. Errors consequently become transferred into the POD modes,
leading to uncertain results. The community has benefited from
POD’s excellent capability of modal analysis but has yet to make the
transfer of uncertainty from input data to modes explored.

In terms of the truncation error incurred in POD, Singler5

derived exact expressions for the error in two different Hilbert spaces
and found that the error can be expressed solely as a function of the
POD eigenvalues and eigenvectors. On top of the previous work,
Fareed and Singler6 performed error analysis for incremental POD in
which a new data column acts as an input. The error bound for trun-
cation and the convergence of reduced-order models is proved.
Garc!ıa-Archilla et al.7 considered three sources of errors (the spatial,

temporal discretization, and truncation) and proved a rigorous error
estimate for POD data assimilation schemes of Navier–Stokes
equations.

In terms of noisy data, the mode corruption8 and error estima-
tion9 have been comprehensively studied, showing that leading modes
are robust. POD has also been applied to remove these noise. Brindise
and Vlachos10 proposed an entropy-line fit method for POD mode
truncation and experimental data denoising. The method was able to
keep modes with relevant flow structures whose energy was less than
that of the noise, therefore improving POD truncation’s effectiveness.

In other forms of modal decomposition techniques, such as the
dynamic mode decomposition (DMD), Duke et al.11 made a system-
atic error analysis of DMD for input data representative of shear flow
instabilities, particularly sinusoidal, square, and sawtooth waves with
tunable parameters. In the evaluation of growth rate, it was shown that
the waveform, resolution of samples relative to characteristic wave-
length, and signal-to-noise-ratio strongly affect the error. Therefore,
special care must be taken for the quality of the input data when
decoding the results.
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On the quality of data generation, quantification of uncertainty
in computational fluid dynamics has been reviewed by Roache.12

Howell13 comprehensively assessed error distribution and correlation
from PIV measurement. The result indicates that the error, by and
large, follows the Gaussian distribution and is influenced by the shear
of the flow. The most interesting results are that errors are correlated
in space. The correlation factor decays semi-linearly with the distance
of two points. We term the distance at which the correlation gets zero
the correlation width which is found to be 3–6 points in PIV.

Based on research to date, one can assess the error of POD-based
reduced-order models even with an analytical formulation.5 However,
how does uncertainty transmit in the POD process when flow data are
biased by structural (a single or several locations) or gusty (single or
several snapshots contaminated) deviations whose mean is not neces-
sarily zero? In this situation, the contamination is not of noise type but
acts as a correction to the bulk data. How correct are the POD modes
and their eigenvalue? Answering these questions forms the motivation
for the present study. In Sec. II, we formulate the analytical expressions
of the uncertainty. Section III presents results to reveal the interpreta-
tion, scaling, and generality of uncertainty. The study is concluded in
Sec. IV.

II. UNCERTAINTY TRANSMISSION OF POD MODES
FROM CONTAMINATED DATA

POD takes snapshots of physical variables, e.g., velocity and pres-
sure, as the input data. We define this contaminated ensemble of snap-
shots Ac, which is composed of the true value Ao and a latent
contaminationA0, satisfying

Ao ¼ Ac " A0 ¼

a11 " a011 a12 " a012 # # # a1M " a01M
a21 " a021 a22 " a022 # # # a2M " a02M
a31 " a031 a32 " a032 # # # a3M " a03M

..

. ..
. . .

. ..
.

aN1 " a0N1 aN2 " a0N2 # # # aNM " a0NM

0

BBBBBBBB@

1

CCCCCCCCA

2 RN$M ; (1)

where M is the number of snapshots (in the direction to be decom-
posed, without loss of generality), and N stands for the rest of the
degrees of freedom (spatial grid points multiplied by the number of
independent variables). In this work, we consider structural (a single
or several locations) or gusty (a single or several snapshots) contami-
nations. In practical applications, POD is solved with singular value
decomposition of Ac, equivalent to the eigenvalue decomposition of
AcAc

T ,

AcAc
T " kiI

! "
/i ¼ 0: (2)

The question is how accurate ki and /i are as the singular value/vector
of Ao or eigenvalue/vector of AoAo

T . Substituting Eq. (1) into Eq. (2)
gives

AoAo
T " kiI

! "
/i ¼ " AcA

0T þ A0Ac
T " A0A0T

! "
/i: (3)

By considering the contamination A0 to be of small magnitude
(jjA0jjF & jjAcjjF) and ignoring higher order terms (equivalent to
ignoring higher order correlations), the accuracy of ki and /i as eigen-
solution for AoAo

T can be evaluated as
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Here, E stands for the expectation of random variables. The uncer-
tainty has been normalized by the square of the Frobenius norm as
follows:

jjAcjj2F ¼
XN

n¼1

XM

m¼1

a2nm: (5)

Furthermore, we substitute the identity

AcA
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into Eq. (4) and obtain the uncertainty evaluation for mode /i as
follows:

e ¼

XN

s¼1

E
XN

n¼1

XM

m¼1

a0nmasm/in þ a0smanm/in

! "
" #2

XN

n¼1

XM

m¼1

a2nm

: (7)

The assumption so far is that the contamination’s amplitude is much
smaller than the fluid data. Therefore, Eq. (7) shall hold for general
conditions, and it is clear that the transmission of uncertainty is deter-
mined by the POD modes, the contaminated data, and the correlation
of the contamination, of which the last will be determined by experi-
mental tests or empirical models. To show the idea, we make use of
the following self-correlation and cross correlation models partly based
on the experimental observation of error and correlation
distributions:13

E a02nm
# $

¼ rnmðself -correlationÞ;
E a0n1m1

a0n2m2

# $
¼ rx n1; n2ð Þrt m1;m2ð Þðcross-correlationÞ:

(8)

The limitation with Eq. (8) is that the self-correlation has the
same degree of freedom as the input data, raising modeling burdens.
Moreover, the cross correlation requires external knowledge. In a sim-
plified case, the self-correlation is prescribed as a constant rnm ¼ rself
(with rself being a constant value). The cross correlation follows a lin-
ear decaying property as demonstrated in Fig. 1, although more com-
plex models can fit in this framework. Both rx and rt decay from the
value of rself with the “distance” of two points, measured with jn1 "
n2j and jm1 "m2j. Once the values exceed a prescribed correlation
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width (Cx and Ct), the cross correlation becomes zero. In circumstan-
ces where the cross correlation ec (induced by rx and rt) plays a minor
role, the uncertainty is determined by self-correlation, of which a phys-
ical interpretation presents

e ¼ es þ ec;

es ¼

XN

n¼1

XM

m¼1

rselfa2nm/
T
i /i

XN

n¼1

XM

m¼1

a2nm
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

es1

þ
N þ 2ð Þ

XM

m¼1

rself aTm/i

! "2

XN

n¼1

XM

m¼1

a2nm
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

es2

: (9)

Here, aTm ¼ ða1m; a2m;…; aNmÞT is a single snapshot of time step m.
The first part es1 is invariant of the POD modes since /T

i /i ¼ 1, and
when rself is a constant, es1 ¼ rself . es2 is dominated by the inner prod-
uct of POD mode /i and the data snapshot aTm, with the weighting
parameter rself . Therefore, the similarity between the input data and
the resulting POD modes becomes a critical and intuitive indicator to
quantify the uncertainty.

III. RESULTS AND DISCUSSION
A. Interpretation of the uncertainty

To understand the composition of uncertainty, we consider a 1D
traveling solitary wave,

a x; tð Þ ¼ 100 exp "0:008 x " t " 50ð Þ2
! "

: (10)

The problem is defined in a spatial and temporal domain of
x 2 ½1; 200+ and t 2 ½1; 100+, where the grid points of N¼ 100 and
M¼ 10 are linearly allocated. We present the signal (normalized by its
maximum), the time-average, and the first three POD modes in Fig. 2.
Due to the traveling nature of the input signal, its POD modes sponta-
neously approximate Fourier modes—the wavenumber increases with
the order of the mode. Such properties create difficulty in effectively
reducing the order of a model.14

To gain a first view of the uncertainty, we show results subject to
a constant self-correlation factor rself ¼ 1 (corresponding to 1% of the
amplitude of the input signal) with cross correlation width Cx¼ 5 and
Ct¼ 1 in Fig. 3. The form of Cx and Ct can be more complex and be
estimated from the environment conditions of the experiment/simula-
tion.13 A decaying behavior of the uncertainty toward higher POD
modes is found, the three parts of uncertainties (es1; es2, and ec) in
Eqs. (7) and (9) are plotted for each POD mode. Comparison between
the three terms shows this case is dominated by self-correlation, partic-
ularly es2. Meanwhile, es1 ¼ rself ¼ 1. The monotonic decaying behav-
ior is explained by Eq. (9): the inner product of the first POD mode
with the signal (summation over time, equivalent to the mean square
of the signal) is the largest and will decrease with mode number, as
seen from the similarities of POD modes and time-averaged signal
in Fig. 2.

FIG. 1. Self-correlation and cross correlation models. The spatial and temporal cor-
relation factors rx and rt linearly decay with the distance of two points. Both values
drop from rself to zero.

FIG. 2. The traveling Gaussian soliton
and its first three POD modes.

FIG. 3. Uncertainty of POD modes for the traveling Gaussian soliton. Terms shown
are es1; es2, and ec of Eq. (9).
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Figure 3 shows that the cross correlation term followed a simi-
lar decaying trend. We investigate this term and the influence of Cx

and Ct in Fig. 4. In either case, Cx or Ct is fixed to one, and the influ-
ence of the other parameter is revealed. The self-correlation is pro-
vided in the first row for comparison. As can be seen, the cross
correlation increases with Cx or Ct and remains below self-
correlation except for the first POD mode, indicating that the first
mode (which contains the most energy) is the most affected regard-
less of the correlation width. The temporal and spatial correlation
widths only positively contribute to the first few modes. For higher
modes, a larger correlation width may decay the uncertainty. As
shown in Sec. III C, the influence of correlation width is highly
dependent on the correlation property of the input data. Thus, a
general law for ec may not exist. It is worth commenting that the
uncertainty formulation (7) holds universally as long as the contami-
nation is small compared to the signal such that the formula (4) is
valid. The constant self-correlation rnm ¼ rself used in Eq. (9) can
also be relaxed to model more realistic conditions.

Figure 5 considers the circumstance when a single snapshot is
contaminated, corresponding to problems that suffer from instanta-
neous perturbation at a particular time. Under this condition, the self-
correlation is led by the inner product of a POD mode and the single
contaminated data snapshot,

es ¼

XN

n¼1

rselfa2nmc

XN

n¼1

XM

m¼1

a2nm
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

es1

þ
N þ 2ð Þrself aTmc

/i

% &2

XN

n¼1

XM

m¼1

a2nm
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

es2

:
(11)

Here, mc is the time step that contamination happens. In contrast to
the globally contaminated case reported in Fig. 4, the influence of indi-
vidual snapshots that received the perturbation becomes essential. The
amplitude of the uncertainty is thus determined by the inner product
between aTmc

and /i, manifesting as the similarity of a POD mode and
the contaminated snapshot. As shown in Fig. 5(a), the self-correlation
is not monotonically decreasing with the mode number. The uncer-
tainty of mode 1, for example, is maximum when the fifth and sixth
snapshots are contaminated, at which the traveling wave locates near
the center of the domain, bearing the most extensive similarity with
mode 1. In other words, the median snapshot is the most critical in
the traveling wave case as it is intuitively most similar to mode 1. Due
to the linear nature of rself in Eq. (9), each column of Fig. 5(a) is actu-
ally a component of the self-correlation shown in Fig. 3. On the other
hand, the cross correlation becomes solely spatial. We observe a simi-
lar trend as self-correlation.

B. Scaling of uncertainty
In the aspect of efficiency, one identifies that the computation

amount scales with N2M from Eq. (7). Thus, for problems with enor-
mous degrees of freedom, the calculation becomes costly. This section
seeks potential scaling properties of uncertainty such that the quantifi-
cation can be performed on data interpolated to coarse grids.

As an example, we consider a 2D flow around a cylinder. The
numerical details of the fluid data generation are not of direct rele-
vance to the present research, and the data are publicly available
online.15 The instantaneous flow together with two of the POD modes
are displayed in Fig. 6. The data consist of two velocity components: u
and v on grid points of 129$ 129 (N ¼ 2$ 129$ 129) with M¼ 75
timesteps.

FIG. 4. Effects of the correlation width Cx jCt¼1 (a) and Ct jCx¼1 (b) on the cross correlation. The first row shows es, while the rest is colored by ec.
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FIG. 5. Influence of a single snapshot contaminated on the uncertainty. Panels (a) and (b) are colored with es and ec (Cx¼ 5), respectively.

FIG. 6. 2D flow (a) and (b) past a cylinder together with its two POD modes (c)–(f).
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We show the uncertainty in Fig. 7. The results are subject to
global contamination and contamination only in a single snapshot,
respectively. For this situation, it is clear that self-correlation will lead
the uncertainty for lower modes regardless of the contamination form.
These modes also have the most significant uncertainty that requires
the most attention.

The scaling is observed by interpolating the data onto different
meshes. We separately reduced the number of grids to 1/2, 1/3, and
1/4 in each direction. As can be seen in Fig. 8, the self-correlation term
es1 remains the value of rself regardless of the grid used. es2 presents a
scaling law with the number of grid points. This feature is explained
by Eq. (9). From the expression, es2 / ðN þ 2Þ. When the value of N
is large and es2 , es1, this scale approximately becomes es / N . In
this example, the cross correlation is much smaller, and the grid points
do not notably influence ec of the first few modes. Therefore, it
becomes feasible to quantify the uncertainty through coarse meshes to
boost efficiency by exploiting the scaling property.

C. Generality of uncertainty
Previous examples have manifested a decaying trend of uncer-

tainty toward higher modes, and the cross correlation is smaller than
self-correlation. Is this property true for general data? Here, we evalu-
ate the generality of uncertainty by considering two sets of random
data. One is a random data matrix A1 2 R200$50 with the value of
entries uniformly distributed between ½0; 1+. The other is data matrix
A2 2 R200$50 generated by a random combination of mathematical
functions. These functions are chosen from a library of functions up to

the fifth order, i.e., x, t, x2, xt, t2,…, t5 as well as sine functions
sin ðxÞ; sin ðtÞ; sin ðxtÞ,…. The generation of A2 follows the idea that
a combination of these functions is capable of representing data cre-
ated by common physical laws.16 One, thus, treats A1 as intrinsically
uncorrelated as opposed to A2. Both A1 and A2 have a sample size of
500.

Figure 9 investigates the dependence of self-correlation on vari-
ous input data and the impact of wide-range correlation widths on
cross correlation. Panels (a) and (c) indicate that the self-correlation
follows the decaying trend regardless of the input data. This decay is
profound for intrinsically correlated data, as seen from the log scale of
(c). The self-correlation also appears insensitive to the random param-
eters that created the input data. Contrarily, the cross correlation
behaves rather differently between A1 and A2. Panels (b) and (d)
show results for Cx ¼ 10; 20;…; 100 and Ct ¼ 5; 10; 15;…; 25 for a
random sample. The maximum correlation width in space and time
each corresponds to half of the total grid points. For data group A1,
cross correlation stays largely below the self-correlation. For each
mode, the value does not necessarily increase with the correlation
width. In A2, the cross correlation can dominate the uncertainty at a
moderate correlation width since the data are intrinsically correlated.
Thus, when considering the uncertainty of POD modes, the correla-
tion property of the input data itself is important. For problems of
intrinsically less correlated, e.g., traveling wave problems, the uncer-
tainty is dominated by self-correlation, and a quick predicting scheme
based on the scaling law is feasible.

Finally, we comment on the error for POD-based reduced-order
models. As seen in Fig. 10, the error typically drops by keeping more

FIG. 7. Uncertainty transmission of the 2D cylinder flow with Cx¼ 3 and Ct¼ 1. The three panels show the results of global contamination (a), contamination at the first snap-
shot (b) and the tenth snapshot (c).

Physics of Fluids LETTER pubs.aip.org/aip/pof

Phys. Fluids 35, 071702 (2023); doi: 10.1063/5.0157849 35, 071702-6

Published under an exclusive license by AIP Publishing

 11 July 2023 13:42:04

pubs.aip.org/aip/phf


modes in building the reduced-order model. When uncertainty is
considered, the error accumulated by the leading modes becomes
considerable and not compensable. This leads to a cutoff point,
above which including more modes will not reduce the error fur-
ther. The higher the uncertainty, the lower the cutoff point shall
be. Although the cutoff mode’s position will also depend on the
problem analyzed and the contamination behavior, understanding
the uncertainty helps build the reduced-order models more
effectively.

IV. CONCLUSIONS
This study formulates the uncertainty transmission of proper

orthogonal decompositions. By evaluating the eigenvalue problem
associated with POD, the uncertainty is expressed as the expectation
of the residual term stemming from data contamination.
Mathematically, the uncertainty contains two parts: self-correlation
and cross correlation of the contamination terms. Based on experi-
mental observations, we proposed a linear decay correlation model.
Meanwhile, other models shall fit handily into this framework.

FIG. 8. Scaling of the uncertainty: (a) self-correlation and (b) cross correlation.

FIG. 9. Uncertainty for two sets of random data A1 and A2: (a) A1, self-correlation; (b) A1, cross correlation; (c) A2, self-correlation; and (d) A2, cross correlation. In panels
(a) and (c), thick blue lines highlight the results for one sample, while the rest 499 are plotted in thin gray lines. In panels (b) and (d), cross correlations with four different corre-
lation parameters are plotted in color as seen in the legend; the rest of the results are shown in gray. Self-correlation is plotted in blue for reference.
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We examine the uncertainty transmission in three aspects. First,
the self-correlation of the uncertainty has a clear physical definition:
the inner product of the POD modes and the data matrix weighted by
the self-correlation factor. Thus, the similarity between both terms, the
input and output of POD, determines the amplitude of self-
correlation. Cross-correlation, following the experimental observation
of small spatial correlation width (3–6 points), may only have a minor
influence in some cases. Second, by formulation, the self-correlation
holds a scaling law with the degree of freedom of the data snapshot.
This nature permits a fast prediction by evaluating the data on a coarse
mesh. Third, we seek the generality of uncertainty distribution by
investigating two sets of random data, with a total of 1000 samples.
We observe a general decaying trend of uncertainty toward higher
modes. This is due to the nature of POD that most energy resides in
lower modes, whose shape thus matches more with the data bulk. The
cross correlation has been examined for a wide range of correlation
widths. For intrinsically correlated input data, the cross correlation
can dominate the uncertainty at a moderate correlation width. On the
contrary, the cross correlation can be neglected for less-correlated
input, where a fast prediction can be realized utilizing the scaling
properties.
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